
gmaps Documentation
Release 0.8.0

Pascal Bugnion

Apr 22, 2018

Contents

1 Installation 1
1.1 Installing jupyter-gmaps with conda . 1
1.2 Installing jupyter-gmaps with pip . 1
1.3 Installing jupyter-gmaps for JupyterLab . 1
1.4 Development version . 2
1.5 Source code . 2

2 Authentication 3

3 Getting started 5
3.1 Basic concepts . 6
3.2 Base maps . 9
3.3 Customising map width, height and layout . 11
3.4 Heatmaps . 12
3.5 Weighted heatmaps . 15
3.6 Markers and symbols . 16
3.7 GeoJSON layer . 20
3.8 Drawing markers, lines and polygons . 24
3.9 Directions layer . 26
3.10 Bicycling, transit and traffic layers . 29

4 Building applications with jupyter-gmaps 33
4.1 Reacting to user actions on the map . 33
4.2 Updating data in response to other widgets . 36

5 Exporting maps 39
5.1 Exporting to PNG . 39
5.2 Exporting to HTML . 39

6 API documentation 41
6.1 Figures and layers . 41
6.2 Utility functions . 51
6.3 Low level widgets . 51
6.4 Datasets . 63
6.5 GeoJSON geometries . 63
6.6 Traitlets . 64

i

7 Contributing to jupyter-gmaps 67
7.1 Contributing . 67
7.2 How to release jupyter-gmaps . 68

8 Release notes 69
8.1 Version 0.8.0 . 69
8.2 Version 0.7.4 . 69
8.3 Version 0.7.3 . 70
8.4 Version 0.7.2 . 70
8.5 Version 0.7.1 . 70
8.6 Version 0.7.0 . 70
8.7 Version 0.6.2 . 70
8.8 Version 0.6.1 . 70
8.9 Version 0.6.0 . 71
8.10 Version 0.5.4 . 71
8.11 Version 0.5.3 . 71
8.12 Version 0.5.3 . 71
8.13 Version 0.5.2 . 72
8.14 Version 0.5.1 . 72
8.15 Version 0.5.0 . 72
8.16 Version 0.4.1 . 72
8.17 Version 0.4.0 . 72
8.18 Version 0.3.6 . 73
8.19 Version 0.3.5 . 73
8.20 Version 0.3.4 . 73
8.21 Version 0.3.3 . 73
8.22 Version 0.3.2 . 73
8.23 Version 0.3.1 . 73
8.24 Version 0.3.0 . 73
8.25 Version 0.2.2 . 74
8.26 Version 0.2.1 . 74
8.27 Version 0.2 . 74
8.28 Version 0.1.6 . 74
8.29 Version 0.1.5 . 74
8.30 Version 0.1.4 . 74
8.31 Version 0.1.3 . 75
8.32 Version 0.1.2 . 75
8.33 Version 0.1.1 . 75
8.34 Version 0.1 . 75

9 Indices and tables 77

Python Module Index 79

ii

CHAPTER 1

Installation

1.1 Installing jupyter-gmaps with conda

The easiest way to install gmaps is with conda:

$ conda install -c conda-forge gmaps

1.2 Installing jupyter-gmaps with pip

Make sure that you have enabled ipywidgets widgets extensions:

$ jupyter nbextension enable --py --sys-prefix widgetsnbextension

You can then install gmaps with:

$ pip install gmaps

Then tell Jupyter to load the extension with:

$ jupyter nbextension enable --py --sys-prefix gmaps

1.3 Installing jupyter-gmaps for JupyterLab

To use jupyter-gmaps with JupyterLab, you will need to install the jupyter widgets extension for JupyterLab:

$ jupyter labextension install @jupyter-widgets/jupyterlab-manager

You can then install jupyter-gmaps via pip (or conda):

1

gmaps Documentation, Release 0.8.0

$ pip install gmaps

Next time you open JupyterLab, you will be prompted to rebuild JupyterLab: this is necessary to include the jupyter-
gmaps frontend code into your JupyterLab installation. You can also trigger this directly on the command line with:

$ jupyter lab build

1.4 Development version

You must have NPM to install the development version. You can install NPM with your package manager.

We strongly recommend installing jupyter-gmaps in a virtual environment (either a conda environment or a virtualenv
environment).

Clone the git repository by running:

$ git clone https://github.com/pbugnion/gmaps.git

For the initial installation, run:

$./dev-install

This installs gmaps in editable mode and installs the Javascript components as symlinks.

If you then make changes to the code, you can make those changes available to a running notebook server by:

• restarting the kernel if you have made changes to the Python source code

• running npm run build:nbextension in the js/ directory and refreshing the browser page containing
the notebook if you have made changes to the JavaScript source. You do not need to restart the kernel. If you are
making many changes to the JavaScript directory, you can run npm run build:watch to rebuild on every
change.

You should not need to restart the notebook server.

1.5 Source code

The jupyter-gmaps source is available on GitHub.

2 Chapter 1. Installation

https://www.npmjs.com
https://github.com/pbugnion/gmaps

CHAPTER 2

Authentication

Most operations on Google Maps require that you tell Google who you are. To authenticate with Google Maps, follow
the instructions for creating an API key. You will probably want to create a new project, then click on the Credentials
section and create a Browser key. The API key is a string that starts with the letters AI.

You can pass this key to gmaps with the configure method:

gmaps.configure(api_key="AI...")

Maps and layers created after the call to gmaps.configure will have access to the API key.

You should avoid hard-coding the API key into your Jupyter notebooks. You can use environment variables. Add the
following line to your shell start-up file (probably ~/.profile or ~/.bashrc):

export GOOGLE_API_KEY=AI...

Make sure you don’t put spaces around the = sign. If you then open a new terminal window and type env at the
command prompt, you should see that your API key. Start a new Jupyter notebook server in a new terminal, and type:

import os
import gmaps

3

https://console.developers.google.com/flows/enableapi?apiid=maps_backend,geocoding_backend,directions_backend,distance_matrix_backend,elevation_backend&keyType=CLIENT_SIDE&reusekey=true
https://en.wikipedia.org/wiki/Environment_variable

gmaps Documentation, Release 0.8.0

gmaps.configure(api_key=os.environ["GOOGLE_API_KEY"])

4 Chapter 2. Authentication

CHAPTER 3

Getting started

gmaps is a plugin for Jupyter for embedding Google Maps in your notebooks. It is designed as a data visualization
tool.

To demonstrate gmaps, let’s plot the earthquake dataset, included in the package:

import gmaps
import gmaps.datasets

gmaps.configure(api_key='AI...') # Fill in with your API key

earthquake_df = gmaps.datasets.load_dataset_as_df('earthquakes')
earthquake_df.head()

The earthquake data has three columns: a latitude and longitude indicating the earthquake’s epicentre and a weight
denoting the magnitude of the earthquake at that point. Let’s plot the earthquakes on a Google map:

locations = earthquake_df[['latitude', 'longitude']]
weights = earthquake_df['magnitude']
fig = gmaps.figure()
fig.add_layer(gmaps.heatmap_layer(locations, weights=weights))
fig

5

gmaps Documentation, Release 0.8.0

This gives you a fully-fledged Google map. You can zoom in and out, switch to satellite view and even to street view
if you really want. The heatmap adjusts as you zoom in and out.

3.1 Basic concepts

gmaps is built around the idea of adding layers to a base map. After you’ve authenticated with Google maps, you start
by creating a figure, which contains a base map:

import gmaps
gmaps.configure(api_key='AI...')

fig = gmaps.figure()
fig

6 Chapter 3. Getting started

authentication.html

gmaps Documentation, Release 0.8.0

You then add layers on top of the base map. For instance, to add a heatmap layer:

import gmaps
gmaps.configure(api_key='AI...')

fig = gmaps.figure(map_type='SATELLITE')

generate some (latitude, longitude) pairs
locations = [(51.5, 0.1), (51.7, 0.2), (51.4, -0.2), (51.49, 0.1)]

heatmap_layer = gmaps.heatmap_layer(locations)
fig.add_layer(heatmap_layer)
fig

3.1. Basic concepts 7

gmaps Documentation, Release 0.8.0

The locations array can either be a list of tuples, as in the example above, a numpy array of shape $N times 2$ or a
dataframe with two columns.

Most attributes on the base map and the layers can be set through named arguments in the constructor or as instance
attributes once the instance is created. These two constructions are thus equivalent:

heatmap_layer = gmaps.heatmap_layer(locations)
heatmap_layer.point_radius = 8

and:

heatmap_layer = gmaps.heatmap_layer(locations, point_radius=8)

The former construction is useful for modifying a map once it has been built. Any change in parameters will propagate
to maps in which those layers are included.

8 Chapter 3. Getting started

gmaps Documentation, Release 0.8.0

3.2 Base maps

Your first action with gmaps will usually be to build a base map:

import gmaps
gmaps.configure(api_key='AI...')

gmaps.figure()

This builds an empty map. You can also set the zoom level and map center explicitly:

new_york_coordinates = (40.75, -74.00)
gmaps.figure(center=new_york_coordinates, zoom_level=12)

If you do not set the map zoom and center, the viewport will automatically focus on the data as you add it to the map.

Google maps offers three different base map types. Choose the base map type by setting the map_type parameter:

gmaps.figure(map_type='HYBRID')

3.2. Base maps 9

gmaps Documentation, Release 0.8.0

gmaps.figure(map_type='TERRAIN')

There are four map types available:

• 'ROADMAP' is the default Google Maps style,

10 Chapter 3. Getting started

gmaps Documentation, Release 0.8.0

• 'SATELLITE' is a simple satellite view,

• 'HYBRID' is a satellite view with common features, such as roads and cities, overlaid,

• 'TERRAIN' is a map that emphasizes terrain features.

3.3 Customising map width, height and layout

The layout of a map figure is controlled by passing a layout argument. This is a dictionary of properties controlling
how the widget is displayed:

import gmaps
gmaps.configure(api_key='AI...')

figure_layout = {
'width': '400px',
'height': '400px',
'border': '1px solid black',
'padding': '1px'

}
gmaps.figure(layout=figure_layout)

The parameters that you are likely to want to tweak are:

• width: controls the figure width. This should be a CSS dimension. For instance, 400px will create a figure that
is 400 pixels wide, while 100% will create a figure that takes up the output cell’s entire width. The default width
is 100%.

• height: controls the figure height. This should be a CSS dimension. The default height is 420px.

• border: Place a border around the figure. This should be a valid CSS border.

• padding: Gap between the figure and the border. This should be a valid CSS padding. You can either have a
single dimension (e.g. 2px), or a quadruple indicating the padding width for each side (e.g. 1px 2px 1px

3.3. Customising map width, height and layout 11

https://ipywidgets.readthedocs.io/en/latest/examples/Widget%20Styling.html
https://developer.mozilla.org/en-US/docs/Web/CSS/width
https://developer.mozilla.org/en-US/docs/Web/CSS/width
https://developer.mozilla.org/en-US/docs/Web/CSS/border
https://developer.mozilla.org/en-US/docs/Web/CSS/padding

gmaps Documentation, Release 0.8.0

2px). This is 0 by default.

• margin: Gap between the border and the figure container. This should be a valid CSS margin. This is 0 by
default.

To center a map in an output cell, use a fixed width and set the left and right margins to auto:

figure_layout = {'width': '500px', 'margin': '0 auto 0 auto'}
gmaps.figure(layout=figure_layout)

3.4 Heatmaps

Heatmaps are a good way of getting a sense of the density and clusters of geographical events. They are a powerful
tool for making sense of larger datasets. We will use a dataset recording all instances of political violence that occurred
in Africa between 1997 and 2015. The dataset comes from the Armed Conflict Location and Event Data Project. This
dataset contains about 110,000 rows.

import gmaps.datasets

locations = gmaps.datasets.load_dataset_as_df('acled_africa')

locations.head()
=> dataframe with 'longitude' and 'latitude' columns

We already know how to build a heatmap layer:

import gmaps
import gmaps.datasets
gmaps.configure(api_key='AI...')

locations = gmaps.datasets.load_dataset_as_df('acled_africa')

12 Chapter 3. Getting started

https://developer.mozilla.org/en-US/docs/Web/CSS/margin
http://www.acleddata.com

gmaps Documentation, Release 0.8.0

fig = gmaps.figure(map_type='HYBRID')
heatmap_layer = gmaps.heatmap_layer(locations)
fig.add_layer(heatmap_layer)
fig

3.4.1 Preventing dissipation on zoom

If you zoom in sufficiently, you will notice that individual points disappear. You can prevent this from happening
by controlling the max_intensity setting. This caps off the maximum peak intensity. It is useful if your data is
strongly peaked. This settings is None by default, which implies no capping. Typically, when setting the maximum
intensity, you also want to set the point_radius setting to a fairly low value. The only good way to find reasonable
values for these settings is to tweak them until you have a map that you are happy with.:

heatmap_layer.max_intensity = 100
heatmap_layer.point_radius = 5

To avoid re-drawing the whole map every time you tweak these settings, you may want to set them in another noteo-
book cell:

3.4. Heatmaps 13

gmaps Documentation, Release 0.8.0

Google maps also exposes a dissipating option, which is true by default. If this is true, the radius of influence
of each point is tied to the zoom level: as you zoom out, a given point covers more physical kilometres. If you set it
to false, the physical radius covered by each point stays fixed. Your points will therefore either be tiny at high zoom
levels or large at low zoom levels.

3.4.2 Setting the color gradient and opacity

You can set the color gradient of the map by passing in a list of colors. Google maps will interpolate linearly between
those colors. You can represent a color as a string denoting the color (the colors allowed by this):

heatmap_layer.gradient = [
'white',
'silver',
'gray'

]

If you need more flexibility, you can represent colours as an RGB triple or an RGBA quadruple:

heatmap_layer.gradient = [
(200, 200, 200, 0.6),
(100, 100, 100, 0.3),
(50, 50, 50, 0.3)

]

14 Chapter 3. Getting started

http://www.w3.org/TR/css3-color/#html4

gmaps Documentation, Release 0.8.0

You can also use the opacity option to set a single opacity across the entire colour gradient:

heatmap_layer.opacity = 0.0 # make the heatmap transparent

3.5 Weighted heatmaps

By default, heatmaps assume that every row is of equal importance. You can override this by passing weights through
the weights keyword argument. The weights array is an iterable (e.g. a Python list or a Numpy array) or a single
pandas series. Weights must all be positive (this is a limitation in Google maps itself).

import gmaps
import gmaps.datasets
gmaps.configure(api_key='AI...')

df = gmaps.datasets.load_dataset_as_df('earthquakes')
dataframe with columns ('latitude', 'longitude', 'magnitude')

fig = gmaps.figure()
heatmap_layer = gmaps.heatmap_layer(

df[['latitude', 'longitude']], weights=df['magnitude'],

3.5. Weighted heatmaps 15

gmaps Documentation, Release 0.8.0

max_intensity=30, point_radius=3.0
)
fig.add_layer(heatmap_layer)
fig

3.6 Markers and symbols

We can add a layer of markers to a Google map. Each marker represents an individual data point:

import gmaps
gmaps.configure(api_key='AI...')

marker_locations = [
(-34.0, -59.166672),
(-32.23333, -64.433327),
(40.166672, 44.133331),
(51.216671, 5.0833302),
(51.333328, 4.25)

]

fig = gmaps.figure()
markers = gmaps.marker_layer(marker_locations)

16 Chapter 3. Getting started

gmaps Documentation, Release 0.8.0

fig.add_layer(markers)
fig

We can also attach a pop-up box to each marker. Clicking on the marker will bring up the info box. The content of the
box can be either plain text or html:

import gmaps
gmaps.configure(api_key='AI...')

nuclear_power_plants = [
{'name': 'Atucha', 'location': (-34.0, -59.167), 'active_reactors': 1},
{'name': 'Embalse', 'location': (-32.2333, -64.4333), 'active_reactors': 1},
{'name': 'Armenia', 'location': (40.167, 44.133), 'active_reactors': 1},
{'name': 'Br', 'location': (51.217, 5.083), 'active_reactors': 1},
{'name': 'Doel', 'location': (51.333, 4.25), 'active_reactors': 4},
{'name': 'Tihange', 'location': (50.517, 5.283), 'active_reactors': 3}

]

plant_locations = [plant['location'] for plant in nuclear_power_plants]
info_box_template = """
<dl>
<dt>Name</dt><dd>{name}</dd>
<dt>Number reactors</dt><dd>{active_reactors}</dd>
</dl>
"""
plant_info = [info_box_template.format(**plant) for plant in nuclear_power_plants]

marker_layer = gmaps.marker_layer(plant_locations, info_box_content=plant_info)
fig = gmaps.figure()
fig.add_layer(marker_layer)
fig

3.6. Markers and symbols 17

gmaps Documentation, Release 0.8.0

Markers are currently limited to the Google maps style drop icon. If you need to draw more complex shape on maps,
use the symbol_layer function. Symbols represent each latitude, longitude pair with a circle whose colour and
size you can customize. Let’s, for instance, plot the location of every Starbuck’s coffee shop in the UK:

import gmaps
import gmaps.datasets

gmaps.configure(api_key='AI...')

df = gmaps.datasets.load_dataset_as_df('starbucks_kfc_uk')

starbucks_df = df[df['chain_name'] == 'starbucks']
starbucks_df = starbucks_df[['latitude', 'longitude']]

starbucks_layer = gmaps.symbol_layer(
starbucks_df, fill_color='green', stroke_color='green', scale=2

)
fig = gmaps.figure()
fig.add_layer(starbucks_layer)
fig

18 Chapter 3. Getting started

gmaps Documentation, Release 0.8.0

You can have several layers of markers. For instance, we can compare the locations of Starbucks coffee shops and
KFC outlets in the UK by plotting both on the same map:

import gmaps
import gmaps.datasets

gmaps.configure(api_key='AI...')

df = gmaps.datasets.load_dataset_as_df('starbucks_kfc_uk')

starbucks_df = df[df['chain_name'] == 'starbucks']
starbucks_df = starbucks_df[['latitude', 'longitude']]

kfc_df = df[df['chain_name'] == 'kfc']
kfc_df = kfc_df[['latitude', 'longitude']]

starbucks_layer = gmaps.symbol_layer(
starbucks_df, fill_color='rgba(0, 150, 0, 0.4)',
stroke_color='rgba(0, 150, 0, 0.4)', scale=2

)

kfc_layer = gmaps.symbol_layer(
kfc_df, fill_color='rgba(200, 0, 0, 0.4)',
stroke_color='rgba(200, 0, 0, 0.4)', scale=2

)

fig = gmaps.figure()
fig.add_layer(starbucks_layer)
fig.add_layer(kfc_layer)
fig

3.6. Markers and symbols 19

gmaps Documentation, Release 0.8.0

3.6.1 Dataset size limitations

Google maps may become very slow if you try to represent more than a few thousand symbols or markers. If you have
a larger dataset, you should either consider subsampling or use heatmaps.

3.7 GeoJSON layer

We can add GeoJSON to a map. This is very useful when we want to draw chloropleth maps.

You can either load data from your own GeoJSON file, or you can load one of the GeoJSON geometries bundled with
gmaps. Let’s start with the latter. We will create a map of the GINI coefficient (a measure of inequality) for every
country in the world.

Let’s start by just plotting the raw GeoJSON:

import gmaps
import gmaps.geojson_geometries
gmaps.configure(api_key='AIza...')

countries_geojson = gmaps.geojson_geometries.load_geometry('countries')

fig = gmaps.figure()

20 Chapter 3. Getting started

https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Gini_coefficient

gmaps Documentation, Release 0.8.0

gini_layer = gmaps.geojson_layer(countries_geojson)
fig.add_layer(gini_layer)
fig

This just plots the country boundaries on top of a Google map.

Next, we want to colour each country by a colour derived from its GINI index. We first need to map from each item
in the GeoJSON document to a GINI value. GeoJSON documents are organised as a collection of features, each of
which has the keys geometry and properties. For instance, for our countries:

>>> print(len(geojson['features']))
217 # corresponds to 217 distinct countries and territories
>>> print(geojson['features'][0])
{

'type': 'Feature'
'geometry': {'coordinates': [...], 'type': 'Polygon'},
'properties': {'ISO_A3': u'AFG', 'name': u'Afghanistan'}

}

As we can see, properties encodes meta-information about the feature, like the country name. We will use this name
to look up a GINI value for that country and translate that into a colour. We can download a list of GINI coefficients
for (nearly) every country using the gmaps.datasets module (you could load your own data here):

import gmaps.datasets
rows = gmaps.datasets.load_dataset('gini') # 'rows' is a list of tuples
country2gini = dict(rows) # dictionary mapping 'country' -> gini coefficient
print(country2gini['United Kingdom'])
32.4

3.7. GeoJSON layer 21

gmaps Documentation, Release 0.8.0

We can now use the country2gini dictionary to map each country to a color. We will use a Matplotlib colormap
to map from our GINI floats to a color that makes sense on a linear scale. We will use the Viridis colorscale:

from matplotlib.cm import viridis
from matplotlib.colors import to_hex

We will need to scale the GINI values to lie between 0 and 1
min_gini = min(country2gini.values())
max_gini = max(country2gini.values())
gini_range = max_gini - min_gini

def calculate_color(gini):
"""
Convert the GINI coefficient to a color
"""
make gini a number between 0 and 1
normalized_gini = (gini - min_gini) / gini_range

invert gini so that high inequality gives dark color
inverse_gini = 1.0 - normalized_gini

transform the gini coefficient to a matplotlib color
mpl_color = viridis(inverse_gini)

transform from a matplotlib color to a valid CSS color
gmaps_color = to_hex(mpl_color, keep_alpha=False)

return gmaps_color

We now need to build an array of colors, one for each country, that we can pass to the GeoJSON layer. The easiest
way to do this is to iterate over the array of features in the GeoJSON:

colors = []
for feature in countries_geojson['features']:

country_name = feature['properties']['name']
try:

gini = country2gini[country_name]
color = calculate_color(gini)

except KeyError:
no GINI for that country: return default color
color = (0, 0, 0, 0.3)

colors.append(color)

We can now pass our array of colors to the GeoJSON layer:

fig = gmaps.figure()
gini_layer = gmaps.geojson_layer(

countries_geojson,
fill_color=colors,
stroke_color=colors,
fill_opacity=0.8)

fig.add_layer(gini_layer)
fig

22 Chapter 3. Getting started

http://matplotlib.org/api/cm_api.html
http://matplotlib.org/examples/color/colormaps_reference.html

gmaps Documentation, Release 0.8.0

3.7.1 GeoJSON geometries bundled with Gmaps

Finding appropriate GeoJSON geometries can be painful. To mitigate this somewhat, gmaps comes with its own set
of curated GeoJSON geometries:

>>> import gmaps.geojson_geometries
>>> gmaps.geojson_geometries.list_geometries()
['brazil-states',
'england-counties',
'us-states',
'countries',
'india-states',
'us-counties',
'countries-high-resolution']

>>> gmaps.geojson_geometries.geometry_metadata('brazil-states')
{'description': 'US county boundaries',
'source': 'http://eric.clst.org/Stuff/USGeoJSON'}

Use the load_geometry function to get the GeoJSON object:

import gmaps
import gmaps.geojson_geometries
gmaps.configure(api_key='AIza...')

countries_geojson = gmaps.geojson_geometries.load_geometry('brazil-states')

fig = gmaps.figure()

3.7. GeoJSON layer 23

gmaps Documentation, Release 0.8.0

geojson_layer = gmaps.geojson_layer(countries_geojson)
fig.add_layer(geojson_layer)
fig

New geometries would greatly enhance the usability of jupyter-gmaps. Refer to this issue on GitHub for information
on how to contribute a geometry.

3.7.2 Loading your own GeoJSON

So far, we have only considered visualizing GeoJSON geometries that come with jupyter-gmaps. Most of the time,
though, you will want to load your own geometry. Use the standard library json module for this:

import json
import gmaps
gmaps.configure(api_key='AIza...')

with open('my_geojson_geometry.json') as f:
geometry = json.load(f)

fig = gmaps.figure()
geojson_layer = gmaps.geojson_layer(geometry)
fig.add_layer(geojson_layer)
fig

3.8 Drawing markers, lines and polygons

The drawing layer lets you draw complex shapes on the map. You can add markers, lines and polygons directly to
maps. Let’s, for instance, draw the Greenwich meridian and add a marker on Greenwich itself:

import gmaps
gmaps.configure(api_key='AIza...')

fig = gmaps.figure(center=(51.5, 0.1), zoom_level=9)

Features to draw on the map
gmt_meridian = gmaps.Line(

start=(52.0, 0.0),
end=(50.0, 0.0),
stroke_weight=3.0

)
greenwich = gmaps.Marker((51.3, 0.0), info_box_content='Greenwich')

drawing = gmaps.drawing_layer(features=[greenwich, gmt_meridian])
fig.add_layer(drawing)
fig

24 Chapter 3. Getting started

https://github.com/pbugnion/gmaps/issues/112
https://docs.python.org/3.5/library/json.html
https://en.wikipedia.org/wiki/Greenwich_Mean_Time

gmaps Documentation, Release 0.8.0

Adding the drawing layer to a map displays drawing controls that lets users add arbitrary shapes to the map. This is
useful if you want to react to user events (for instance, if you want to run some Python code every time the user adds
a marker). This is discussed in the Reacting to user actions on the map section.

To hide the drawing controls, pass show_controls=False as argument to the drawing layer:

drawing = gmaps.drawing_layer(
features=[greenwich, gmt_meridian],
show_controls=False

)

Besides lines and markers, you can also draw polygons on the map. This is useful for drawing complex shapes. For
instance, we can draw the London congestion charge zone. jupyter-gmaps has a built-in dataset with the coordinates
of this zone:

import gmaps
import gmaps.datasets

london_congestion_zone_path = gmaps.datasets.load_dataset('london_congestion_zone')
london_congestion_zone_path[:2]
[(51.530318, -0.123026), (51.530078, -0.123614)]

We can draw this on the map with a gmaps.Polygon:

fig = gmaps.figure(center=(51.5, -0.1), zoom_level=12)
london_congestion_zone_polygon = gmaps.Polygon(

london_congestion_zone_path,
stroke_color='blue',
fill_color='blue'

)
drawing = gmaps.drawing_layer(

features=[london_congestion_zone_polygon],

3.8. Drawing markers, lines and polygons 25

https://en.wikipedia.org/wiki/London_congestion_charge

gmaps Documentation, Release 0.8.0

show_controls=False
)
fig.add_layer(drawing)
fig

We can pass an arbitrary list of (latitude, longitude) pairs to gmaps.Polygon to specify complex shapes. For details on
how to style polygons, see the gmaps.Polygon API documentation.

See the API documentation for gmaps.drawing_layer() for an exhaustive list of options for the drawing layer.

3.9 Directions layer

gmaps supports drawing routes based on the Google maps directions service. At the moment, this only supports
directions between points denoted by latitude and longitude:

import gmaps
import gmaps.datasets
gmaps.configure(api_key='AIza...')

Latitude-longitude pairs
geneva = (46.2, 6.1)
montreux = (46.4, 6.9)
zurich = (47.4, 8.5)

fig = gmaps.figure()
geneva2zurich = gmaps.directions_layer(geneva, zurich)
fig.add_layer(geneva2zurich)
fig

26 Chapter 3. Getting started

https://developers.google.com/maps/documentation/javascript/examples/directions-simple

gmaps Documentation, Release 0.8.0

You can also pass waypoints and customise the directions request. You can pass up to 23 waypoints. Waypoints are
not supported when the travel mode is 'TRANSIT' (this is a limitation of the Google Maps directions service):

fig = gmaps.figure()
geneva2zurich_via_montreux = gmaps.directions_layer(

geneva, zurich, waypoints=[montreux],
travel_mode='BICYCLING')

fig.add_layer(geneva2zurich_via_montreux)
fig

3.9. Directions layer 27

gmaps Documentation, Release 0.8.0

You can customise how directions are rendered on the map:

fig = gmaps.figure()
geneva2zurich = gmaps.directions_layer(

geneva, zurich, show_markers=False,
stroke_color='red', stroke_weight=3.0, stroke_opacity=1.0)

fig.add_layer(geneva2zurich)
fig

28 Chapter 3. Getting started

gmaps Documentation, Release 0.8.0

The full list of options is given as part of the documentation for the gmaps.directions_layer().

Updating options on the layer object will update the map. This lets you use the directions layer as part of a larger
widget application. See the app tutorial for details.

3.10 Bicycling, transit and traffic layers

You can add bicycling, transit and traffic information to a base map. For instance, use gmaps.
bicycling_layer() to draw cycle lanes. This will also change the style of the base layer to de-emphasize
streets which are not cycle-friendly.

import gmaps
gmaps.configure(api_key='AI...')

Map centered on London
fig = gmaps.figure(center=(51.5, -0.2), zoom_level=11)
fig.add_layer(gmaps.bicycling_layer())
fig

3.10. Bicycling, transit and traffic layers 29

app_tutorial.html

gmaps Documentation, Release 0.8.0

Similarly, the transit layer, available as gmaps.transit_layer(), adds information about public transport, where
available.

30 Chapter 3. Getting started

gmaps Documentation, Release 0.8.0

The traffic layer, available as gmaps.traffic_layer(), adds information about the current state of traffic.

3.10. Bicycling, transit and traffic layers 31

gmaps Documentation, Release 0.8.0

Unlike the other layers, these layers do not take any user data. Thus, jupyter-gmaps will not use them to center the
map. This means that, if you use these layers by themselves, you will often want to center the figure explicitly, using
the center and zoom_level attributes.

32 Chapter 3. Getting started

CHAPTER 4

Building applications with jupyter-gmaps

You can use jupyter-gmaps as a component in a Jupyter widgets application. Jupyter widgets let you embed rich user interfaces in Jupyter notebooks. For instance:

• you can use maps as a way to get user input. The drawing layer lets users draw markers, lines or polygons
on the map. We can specify arbitrary Python code that runs whenever a shape is added to the map. As an
example, we will build an application where, whenever the user places a marker, we retrieve the address
of the marker and write it in a text widget.

• you can use maps as a way to display the result of an external computation. For instance, if you have
timestamped geographical data (for instance, you have the date and coordinates of a series of events), you
can combine a heatmap with a slider to see how events unfold over time.

4.1 Reacting to user actions on the map

The drawing layer lets us specify Python code to be executed whenever the user adds a feature (like a marker, a line
or a polygon) to the map. To demonstrate this, we will build a small application for reverse geocoding: when the user
places a marker on the map, we will find the address closest to that marker and write it in a text widget. We will use
geopy, a wrapper around several geocoding APIs, to calculate the address from the marker’s coordinates.

This is the entire code listing:

import ipywidgets as widgets
import geopy
import gmaps

API_KEY = 'AIz...'

gmaps.configure(api_key=API_KEY)

class ReverseGeocoder(object):
"""
Jupyter widget for finding addresses.

33

https://ipywidgets.readthedocs.io/en/stable/
https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20List.html#Text
https://pypi.python.org/pypi/geopy

gmaps Documentation, Release 0.8.0

The user places markers on a map. For each marker,
we use `geopy` to find the nearest address to that
marker, and write that address in a text box.
"""

def __init__(self):
self._figure = gmaps.figure()
self._drawing = gmaps.drawing_layer()
self._drawing.on_new_feature(self._new_feature_callback)
self._figure.add_layer(self._drawing)
self._address_box = widgets.Text(

description='Address: ',
disabled=True,
layout={'width': '95%', 'margin': '10px 0 0 0'}

)
self._geocoder = geopy.geocoders.GoogleV3(api_key=API_KEY)
self._container = widgets.VBox([self._figure, self._address_box])

def _get_location_details(self, location):
return self._geocoder.reverse(location, exactly_one=True)

def _clear_address_box(self):
self._address_box.value = ''

def _show_address(self, location):
location_details = self._get_location_details(location)
if location_details is None:

self._address_box.value = 'No address found'
else:

self._address_box.value = location_details.address

def _new_feature_callback(self, feature):
try:

location = feature.location
except AttributeError:

return # Not a marker

Clear address box to signify to the user that something is happening
self._clear_address_box()

Remove all markers other than the one that has just been added.
self._drawing.features = [feature]

Compute the address and display it
self._show_address(location)

def render(self):
return self._container

ReverseGeocoder().render()

34 Chapter 4. Building applications with jupyter-gmaps

gmaps Documentation, Release 0.8.0

There are several things to note:

• We wrap the application in a ReverseGeocoder class. Wrapping your application in a class (rather than
using the notebook’s global namespace) helps with encapsulation and lets you instantiate this widget multiple
times. Since the flow through widget applications is often more complex than linear data analysis workflows,
encapsulation will improve your ability to reason about the code.

• As part of the class constructor, we use gmaps.figure() to create a figure. We then use gmaps.
drawing_layer() to create a drawing layer, which we add to the figure. We also create a widgets.Text
widget. This is a text box in which we will write the address. We then wrap our figure and the text box in a
single widgets.VBox, a widget container that stacks widgets vertically.

• We register a callback on the drawing layer using .on_new_feature. The function that we pass in to .
on_new_feature will get called whenever the user adds a feature to the map. This is the hook that lets us
build complex applications on top of the drawing layer: we can run arbitrary Python code when the user adds a
marker to the map.

• In the .on_new_feature callback, we first check whether the feature that has been added is a marker (the
user could, in principle, have added another feature type, like a line, to the map).

• Assuming the feature is a valid marker, we first clear the text widget containing the address. This gives feedback
to the user that something is happening.

• We then re-write the .features array of the drawing layer, keeping just the marker that the user has just
added. This clears previous markers, avoiding clutter on the map.

• We then use geopy to find the adddress. Assuming the address is valid, display it in the text widget.

4.1. Reacting to user actions on the map 35

https://pypi.python.org/pypi/geopy

gmaps Documentation, Release 0.8.0

4.2 Updating data in response to other widgets

Many layers support updating the data without re-rendering the entire map. This is useful for exploring multi-
dimensional datasets, especially in conjunction with other widgets.

As an example, we will use the acled_africa_by_year dataset, a dataset indexing violence against civilians in
Africa. The original dataset is from the ACLED project. The dataset has four columns:

import gmaps.datasets

df = gmaps.datasets.load_dataset_as_df('acled_africa_by_year')
df.head()

We will build an application that lets the user explore different years via a slider. When the user changes the slider, we
display the total number of fatalities for that year, and update a heatmap showing the distribution of conflicts.

This is the entire code listing:

from IPython.display import display
import ipywidgets as widgets

import gmaps
gmaps.configure(api_key='AIza...')

class AcledExplorer(object):
"""
Jupyter widget for exploring the ACLED dataset.

The user uses the slider to choose a year. This renders
a heatmap of civilian victims in that year.
"""

def __init__(self, df):
self._df = df
self._heatmap = None
self._slider = None
initial_year = min(self._df['year'])

title_widget = widgets.HTML(
'<h3>Civilian casualties in Africa, by year</h3>'
'<h4>Data from ACLED project</h4>

→˓'
)

map_figure = self._render_map(initial_year)
controls = self._render_controls(initial_year)
self._container = widgets.VBox([title_widget, controls, map_figure])

36 Chapter 4. Building applications with jupyter-gmaps

https://www.acleddata.com/data/

gmaps Documentation, Release 0.8.0

def render(self):
display(self._container)

def _on_year_change(self, change):
year = self._slider.value
self._heatmap.locations = self._locations_for_year(year)
self._total_box.value = self._total_casualties_text_for_year(year)
return self._container

def _render_map(self, initial_year):
fig = gmaps.figure(map_type='HYBRID')
self._heatmap = gmaps.heatmap_layer(

self._locations_for_year(initial_year),
max_intensity=100,
point_radius=8

)
fig.add_layer(self._heatmap)
return fig

def _render_controls(self, initial_year):
self._slider = widgets.IntSlider(

value=initial_year,
min=min(self._df['year']),
max=max(self._df['year']),
description='Year',
continuous_update=False

)
self._total_box = widgets.Label(

value=self._total_casualties_text_for_year(initial_year)
)
self._slider.observe(self._on_year_change, names='value')
controls = widgets.HBox(

[self._slider, self._total_box],
layout={'justify_content': 'space-between'}

)
return controls

def _locations_for_year(self, year):
return self._df[self._df['year'] == year][['latitude', 'longitude']]

def _total_casualties_for_year(self, year):
return int(self._df[self._df['year'] == year]['year'].count())

def _total_casualties_text_for_year(self, year):
return '{} civilian casualties'.format(self._total_casualties_for_year(year))

AcledExplorer(df).render()

4.2. Updating data in response to other widgets 37

gmaps Documentation, Release 0.8.0

There are several things to note on this:

• We wrap the application in a class to help keep the mutable state encapsulated.

• As part of the class constructor, we use gmaps.figure() to create a figure. We add use gmaps.
heatmap_layer() to create a heatmap, which we add to the figure. The Heatmap object returned has
a locations attribute. Setting this to a new value will automatically update the heatmap.

• We create a slider with widgets.IntSlider. In general, jupyter-gmaps objects are designed to interact
with widgets from ipywidgets. For a full list of available widgets, see the ipywidgets documentation.

• We want to react to changes in the slider: every time the slider moves, we recompute the total number of
fatalities and update the data in the heatmap. To react to changes in a widget, we use the .observe method on
the widget. This lets us specify a callback that gets called whenever a given attribute of the widget changes. We
pass the names="value" argument to slider.observe to only react to changes in the slider’s value
attribute. Note that the callback (self.render in our case) needs to take a single argument. It gets passed a
dictionary describing the change.

• To build the layout for our application, we use combinations of HBox and VBox widgets.

38 Chapter 4. Building applications with jupyter-gmaps

https://ipywidgets.readthedocs.io/en/latest/examples/Widget%20List.html
https://ipywidgets.readthedocs.io/en/latest/examples/Widget%20List.html#HBox
https://ipywidgets.readthedocs.io/en/latest/examples/Widget%20List.html#VBox

CHAPTER 5

Exporting maps

5.1 Exporting to PNG

You can save maps to PNG by clicking the Download button in the toolbar. This will download a static copy of the
map.

This feature suffers from some know issues:

• there is no way to set the quality of the rendering at present,

• you cannot export maps that contain a Directions layer (see the issue on Github for details).

5.2 Exporting to HTML

You can export maps to HTML using the infrastructure provided by ipywidgets. For instance, let’s export a simple
map to HTML:

from ipywidgets.embed import embed_minimal_html
import gmaps

gmaps.configure(api_key="AI...")

fig = gmaps.figure()
embed_minimal_html('export.html', views=[fig])

This generates a file, export.html, with two (or more) <script> tags that contain the widget state. The scripts
with tag <script type="application/vnd.jupyter.widget-view+json"> indicate where the wid-
gets will be placed in the DOM. You can move these around and nest them in other DOM elements to change where
the exported maps appear in the DOM.

Open export.html with a webserver, e.g. by running, if you use Python 3:

python -m http.server 8080

39

https://github.com/pbugnion/gmaps/issues/144

gmaps Documentation, Release 0.8.0

Or, if you use Python 2:

python -m SimpleHTTPServer 8080

Navigate to http://0.0.0.0:8080/export.html and you should see the export!

The module ipywidgets.embed contains other functions for exporting that will give you greater control over what
is exported. See the documentation and the source code for more details.

40 Chapter 5. Exporting maps

https://ipywidgets.readthedocs.io/en/latest/embedding.html#python-interface
https://github.com/jupyter-widgets/ipywidgets/blob/master/ipywidgets/embed.py

CHAPTER 6

API documentation

6.1 Figures and layers

gmaps.figure(display_toolbar=True, display_errors=True, zoom_level=None, center=None, lay-
out=None, map_type=’ROADMAP’, mouse_handling=’COOPERATIVE’)

Create a gmaps figure

This returns a Figure object to which you can add data layers.

Parameters

• display_toolbar (boolean, optional) – Boolean denoting whether to show the
toolbar. Defaults to True.

• display_errors (boolean, optional) – Boolean denoting whether to show er-
rors that arise in the client. Defaults to True.

• zoom_level (int, optional) – Integer between 0 and 21 indicating the initial zoom
level. High values are more zoomed in. By default, the zoom level is chosen to fit the data
passed to the map. If specified, you must also specify the map center.

• center (tuple, optional) – Latitude-longitude pair determining the map center. By
default, the map center is chosen to fit the data passed to the map. If specified, you must
also specify the zoom level.

• map_type (str, optional) – String representing the type of map to show. One of
‘ROADMAP’ (the classic Google Maps style) ‘SATELLITE’ (just satellite tiles with no
overlay), ‘HYBRID’ (satellite base tiles but with features such as roads and cities overlaid)
and ‘TERRAIN’ (map showing terrain features). Defaults to ‘ROADMAP’.

• mouse_handling (str, optional) – String representing how the map captures the
page’s mouse event. One of ‘COOPERATIVE’ (scroll events scroll the page without zoom-
ing the map, double clicks or CTRL/CMD+scroll zoom the map), ‘GREEDY’ (the map
captures all scroll events), ‘NONE’ (the map cannot be zoomed or panned by user ges-
tures) or ‘AUTO’ (cooperative if the notebook is displayed in an iframe, greedy otherwise).
Defaults to ‘COOPERATIVE’.

41

gmaps Documentation, Release 0.8.0

• layout (dict, optional) – Control the layout of the figure, e.g. its width, height,
border etc. For instance, passing layout={'width': '400px', 'height':
'300px'} will build a figure of fixed width and height. For more in formation on available
properties, see the ipywidgets documentation on widget layout.

Returns A gmaps.Figure widget.

Examples

>>> import gmaps
>>> gmaps.configure(api_key="AI...")
>>> fig = gmaps.figure()
>>> locations = [(46.1, 5.2), (46.2, 5.3), (46.3, 5.4)]
>>> fig.add_layer(gmaps.heatmap_layer(locations))

You can also explicitly specify the intiial map center and zoom:

>>> fig = gmaps.figure(center=(46.0, -5.0), zoom_level=8)

To customise the layout:

>>> fig = gmaps.figure(layout={
'width': '400px',
'height': '600px',
'padding': '3px',
'border': '1px solid black'

})

To have a satellite map:

>>> fig = gmaps.figure(map_type='HYBRID')

gmaps.heatmap_layer(locations, weights=None, max_intensity=None, dissipating=True,
point_radius=None, opacity=0.6, gradient=None)

Create a heatmap layer.

This returns a gmaps.Heatmap or a gmaps.WeightedHeatmap object that can be added to a gmaps.
Figure to draw a heatmap. A heatmap shows the density of points in or near a particular area.

To set the parameters, pass them to the constructor or set them on the Heatmap object after construction:

>>> heatmap = gmaps.heatmap_layer(locations, max_intensity=10)

or:

>>> heatmap = gmaps.heatmap_layer(locations)
>>> heatmap.max_intensity = 10

Examples

>>> fig = gmaps.figure()
>>> locations = [(46.1, 5.2), (46.2, 5.3), (46.3, 5.4)]
>>> heatmap = gmaps.heatmap_layer(locations)
>>> heatmap.max_intensity = 2
>>> heatmap.point_radius = 3
>>> heatmap.gradient = ['white', 'gray']
>>> fig.add_layer(heatmap)

42 Chapter 6. API documentation

https://ipywidgets.readthedocs.io/en/latest/examples/Widget%20Styling.html#The-layout-attribute

gmaps Documentation, Release 0.8.0

Parameters

• locations (iterable of latitude, longitude pairs) – Iterable of (lati-
tude, longitude) pairs denoting a single point. Latitudes are expressed as a float between -90
(corresponding to 90 degrees south) and +90 (corresponding to 90 degrees north). Longi-
tudes are expressed as a float between -180 (corresponding to 180 degrees west) and +180
(corresponding to 180 degrees east). This can be passed in as either a list of tuples, a two-
dimensional numpy array or a pandas dataframe with two columns, in which case the first
one is taken to be the latitude and the second one is taken to be the longitude.

• weights (iterable of floats, optional) – Iterable of weights of the same
length as locations. All the weights must be positive.

• max_intensity (float, optional) – Strictly positive floating point number indi-
cating the numeric value that corresponds to the hottest colour in the heatmap gradient. Any
density of points greater than that value will just get mapped to the hottest colour. Setting
this value can be useful when your data is sharply peaked. It is also useful if you find that
your heatmap disappears as you zoom in.

• point_radius (int, optional) – Number of pixels for each point passed in the
data. This determines the “radius of influence” of each data point.

• dissipating (bool, optional) – Whether the radius of influence of each point
changes as you zoom in or out. If dissipating is True, the radius of influence of each point
increases as you zoom out and decreases as you zoom in. If False, the radius of influence
remains the same. Defaults to True.

• opacity (float, optional) – The opacity of the heatmap layer. Defaults to 0.6.

• gradient (list of colors, optional) – The color gradient for the heatmap.
This must be specified as a list of colors. Google Maps then interpolates linearly between
those colors. Colors can be specified as a simple string, e.g. ‘blue’, as an RGB tuple, e.g.
(100, 0, 0), or as an RGBA tuple, e.g. (100, 0, 0, 0.5).

Returns A gmaps.Heatmap or a gmaps.WeightedHeatmap widget.

gmaps.symbol_layer(locations, hover_text=”, fill_color=None, fill_opacity=1.0, stroke_color=None,
stroke_opacity=1.0, scale=3, info_box_content=None, display_info_box=None)

Symbol layer

Add this layer to a gmaps.Figure instance to draw symbols on the map. A symbol will be drawn on the map
for each point in the locations argument.

Examples

>>> fig = gmaps.figure()
>>> locations = [

(-34.0, -59.166672),
(-32.23333, -64.433327),
(40.166672, 44.133331),
(51.216671, 5.0833302),
(51.333328, 4.25)

]
>>> symbols = gmaps.symbol_layer(

locations, fill_color='red', stroke_color='red')
>>> fig.add_layer(symbols)

You can set a list of information boxes, which will be displayed when the user clicks on a marker.

6.1. Figures and layers 43

gmaps Documentation, Release 0.8.0

>>> list_of_infoboxes = [
'Simple string info box',
'HTML content'

]
>>> symbol_layer = gmaps.symbol_layer(

locations, info_box_content=list_of_infoboxes)

You can also set text that appears when someone’s mouse hovers over a point:

>>> names = ['Atucha', 'Embalse', 'Armenia', 'BR', 'Doel']
>>> symbol_layer = gmaps.symbol_layer(locations, hover_text=names)

Apart from locations, which must be an iterable of (latitude, longitude) pairs, the arguments can be given
as either a list of the same length as locations, or a single value. If given as a single value, this value will be
broadcast to every marker. Thus, these two calls are equivalent:

>>> symbols = gmaps.symbol_layer(
locations, fill_color=['red']*len(locations))

>>> symbols = gmaps.symbol_layer(
locations, fill_color='red')

The former is useful for passing different colours to different symbols.

>>> colors = ['red', 'green', 'blue', 'black', 'white']
>>> symbols = gmaps.symbol_layer(

locations, fill_color=colors, stroke_color=colors)

Parameters

• locations (list of tuples) – List of (latitude, longitude) pairs denoting a single
point. Latitudes are expressed as a float between -90 (corresponding to 90 degrees south)
and +90 (corresponding to 90 degrees north). Longitudes are expressed as a float between
-180 (corresponding to 180 degrees west) and +180 (corresponding to 180 degrees east).

• hover_text (string or list of strings, optional) – Text to be dis-
played when a user’s mouse is hovering over a marker. This can be either a single string, in
which case it will be applied to every marker, or a list of strings, in which case it must be of
the same length as locations. If this is set to an empty string, nothing will appear when the
user’s mouse hovers over a symbol.

• fill_color (single color or list of colors, optional) – The fill
color of the symbol. This can be specified as a single color, in which case the same color
will apply to every symbol, or as a list of colors, in which case it must be the same length as
locations. Colors can be specified as a simple string, e.g. ‘blue’, as an RGB tuple, e.g.
(100, 0, 0), or as an RGBA tuple, e.g. (100, 0, 0, 0.5).

• fill_opacity (float or list of floats, optional) – The opacity of the
fill color. The opacity should be a float between 0.0 (transparent) and 1.0 (opaque), or a list
of floats. 1.0 by default.

• stroke_color (single color or list of colors, optional) – The
stroke color of the symbol. This can be specified as a single color, in which case the same
color will apply to every symbol, or as a list of colors, in which case it must be the same
length as locations. Colors can be specified as a simple string, e.g. ‘blue’, as an RGB
tuple, e.g. (100, 0, 0), or as an RGBA tuple, e.g. (100, 0, 0, 0.5).

• stroke_opacity (float or list of floats, optional) – The opacity of
the stroke color. The opacity should be a float between 0.0 (transparent) and 1.0 (opaque),

44 Chapter 6. API documentation

gmaps Documentation, Release 0.8.0

or a list of floats. 1.0 by default.

• scale (integer or list of integers, optional) – How large the marker
is. This can either be a single integer, in which case the same scale will be applied to every
marker, or it must be an iterable of the same length as locations. The scale must be
greater than 1. This defaults to 3.

• info_box_content (string or list of strings, optional) – Content
to be displayed when user clicks on a marker. This should either be a single string, in
which case the same content will apply to every marker, or a list of strings of the same
length of the locations list.

• display_info_box (boolean or list of booleans, optional) –
Whether to display an info box when the user clicks on a symbol. This should either be a
single boolean value, in which case it will be applied to every symbol, or a list of boolean
values of the same length as the locations list. The default value is True for any symbols for
which info_box_content is set, and False otherwise.

gmaps.marker_layer(locations, hover_text=”, label=”, info_box_content=None, dis-
play_info_box=None)

Marker layer

Add this layer to a gmaps.Figure instance to draw markers corresponding to specific locations on the map.
A marker will be drawn on the map for each point in the locations argument.

Examples

>>> fig = gmaps.figure()
>>> locations = [

(-34.0, -59.166672),
(-32.23333, -64.433327),
(40.166672, 44.133331),
(51.216671, 5.0833302),
(51.333328, 4.25)

]
>>> markers = gmaps.marker_layer(locations)
>>> fig.add_layer(markers)

Parameters

• locations (list of tuples) – List of (latitude, longitude) pairs denoting a single
point. Latitudes are expressed as a float between -90 (corresponding to 90 degrees south)
and +90 (corresponding to 90 degrees north). Longitudes are expressed as a float between
-180 (corresponding to 180 degrees west) and +180 (corresponding to 180 degrees east).

• hover_text (string or list of strings, optional) – Text to be dis-
played when a user’s mouse is hovering over a marker. This can be either a single string, in
which case it will be applied to every marker, or a list of strings, in which case it must be of
the same length as locations. If this is set to an empty string, nothing will appear when the
user’s mouse hovers over a marker.

• label (string or list of strings, optional) – Text to be displayed inside
the marker. Google maps only displays the first letter of whatever string is passed to the
marker. This can be either a single string, in which case every marker will receive the same
label, or a list of strings, in which case it must be of the same length as locations.

• info_box_content (string or list of strings, optional) – Content
to be displayed when user clicks on a marker. This should either be a single string, in

6.1. Figures and layers 45

gmaps Documentation, Release 0.8.0

which case the same content will apply to every marker, or a list of strings of the same
length of the locations list.

• display_info_box (boolean or list of booleans, optional) –
Whether to display an info box when the user clicks on a marker. This should either be a
single boolean value, in which case it will be applied to every marker, or a list of boolean
values of the same length as the locations list. The default value is True for any markers for
which info_box_content is set, and False otherwise.

gmaps.geojson_layer(geojson, fill_color=None, fill_opacity=0.4, stroke_color=None,
stroke_opacity=0.8, stroke_weight=1.0)

GeoJSON layer

Add this layer to a gmaps.Figure instance to render GeoJSON.

Examples

Let’s start by fetching some GeoJSON. We could have loaded it from file, but let’s load it from a URL instead.
You will need requests.

>>> import json
>>> import requests
>>> countries_string = requests.get(

"https://raw.githubusercontent.com/johan/world.geo.json/master/countries.geo.
→˓json"
).content
>>> countries = json.loads(countries_string)

>>> import gmaps
>>> gmaps.configure(api_key="AI...")
>>> fig = gmaps.figure()
>>> geojson = gmaps.geojson_layer(countries)
>>> fig.add_layer(geojson)
>>> fig

We can pass style options into the layer. Let’s assign a random color to each country:

>>> import random
>>> colors = [

random.choice(['red', 'green', 'blue', 'purple', 'yellow', 'teal'])
for country in countries['features']

]
>>> geojson = gmaps.geojson_layer(countries, fill_color=colors)

Finally, let’s also make our colors more transparent and decrease the stroke weight.

>>> geojson = gmaps.geojson_layer(
countries, fill_color=colors, fill_opacity=0.2, stroke_weight=1)

Parameters

• geojson (dict) – A Python dictionary containing a GeoJSON feature collection. If you
have a GeoJSON file, you will need to load it using json.load.

• fill_color (single color or list of colors, optional) – The fill
color of the symbol. This can be specified as a single color, in which case the same color
will apply to every symbol, or as a list of colors, in which case it must be the same length as
locations. Colors can be specified as a simple string, e.g. ‘blue’, as an RGB tuple, e.g.
(100, 0, 0), or as an RGBA tuple, e.g. (100, 0, 0, 0.5).

46 Chapter 6. API documentation

https://docs.python.org/3.6/library/json.html

gmaps Documentation, Release 0.8.0

• fill_opacity (float or list of floats, optional) – The opacity of the
fill color. The opacity should be a float between 0.0 (transparent) and 1.0 (opaque), or a list
of floats. 0.4 by default.

• stroke_color (single color or list of colors, optional) – The
stroke color of the symbol. This can be specified as a single color, in which case the same
color will apply to every symbol, or as a list of colors, in which case it must be the same
length as locations. Colors can be specified as a simple string, e.g. ‘blue’, as an RGB
tuple, e.g. (100, 0, 0), or as an RGBA tuple, e.g. (100, 0, 0, 0.5).

• stroke_opacity (float or list of floats, optional) – The opacity of
the stroke color. The opacity should be a float between 0.0 (transparent) and 1.0 (opaque),
or a list of floats. 0.8 by default.

• stroke_weight (float or list of floats, optional) – The width, in pix-
els, of the stroke. Useful values range from 0.0 (corresponding to no stroke) to about 20,
corresponding to a very fat brush. 3.0 by default.

gmaps.drawing_layer(features=None, mode=’MARKER’, show_controls=True, marker_options=None,
line_options=None, polygon_options=None)

Create an interactive drawing layer

Adding a drawing layer to a map allows adding custom shapes, both programatically and interactively (by
drawing on the map).

Examples

You can use the drawing layer to add lines, markers and polygons to a map:

>>> fig = gmaps.figure()
>>> drawing = gmaps.drawing_layer(features=[

gmaps.Line((46.23, 5.86), (46.44, 5.24), stroke_weight=3.0),
gmaps.Marker((46.88, 5.45), label='D'),
gmaps.Polygon(

[(46.72, 6.06), (46.48, 6.49), (46.79, 6.91)],
fill_color='red'

)
])
>>> fig.add_layer(drawing)
>>> fig

You can also use the drawing layer as a way to get user input. The user can draw features on the map. You can
then get the list of features programatically.

>>> fig = gmaps.figure()
>>> drawing = gmaps.drawing_layer()
>>> fig.add_layer(drawing)
>>> fig
>>> # Now draw on the map
>>> drawing.features
[Marker(location=(46.83, 5.56)),
Marker(location=(46.46, 5.91)),
Line(end=(46.32, 5.98), start=(46.42, 5.12))]

You can bind callbacks that are executed when a new feature is added. For instance, you can use geopy to get
the address corresponding to markers that you add on the map:

API_KEY = "Aiz..."

6.1. Figures and layers 47

http://geopy.readthedocs.io/en/latest/

gmaps Documentation, Release 0.8.0

import gmaps
import geopy

gmaps.configure(api_key=API_KEY)
fig = gmaps.figure()
drawing = gmaps.drawing_layer()

geocoder = geopy.geocoders.GoogleV3(api_key=API_KEY)

def print_address(feature):
try:

print(geocoder.reverse(feature.location, exactly_one=True))
except AttributeError as e:

Not a marker
pass

drawing.on_new_feature(print_feature)
fig.add_layer(drawing)
fig # display the figure

Parameters

• features (list of features, optional) – List of features to draw on the map.
Features must be one of gmaps.Marker, gmaps.Line or gmaps.Polygon.

• marker_options (gmaps.MarkerOptions, dict or None, optional) – Options
controlling how markers are drawn on the map. Either pass in an instance of
gmaps.MarkerOptions, or a dictionary with keys hover_text, display_info_box,
info_box_content, label (or a subset of these). See gmaps.MarkerOptions for docu-
mentation on possible values. Note that this only affects the initial options of markers added
to the map by a user. To customise markers added programatically, pass in the options to
the gmaps.Marker constructor.

• line_options (gmaps.LineOptions, dict or None, optional) – Options controlling
how new lines are drawn on the map. Either pass in an instance of gmaps.LineOptions,
or a dictionary with keys stroke_weight, stroke_color, stroke_opacity (or a subset of these).
See gmaps.LineOptions for documentation on possible values. Note that this only
affects the initial options of lines added to the map by a user. To customise lines added
programatically, pass in the options to the gmaps.Line constructor.

• polygon_options (gmaps.PolygonOptions, dict or None, optional) – Options
controlling how new polygons are drawn on the map. Either pass in an instance of gmaps.
PolygonOptions, or a dictionary with keys stroke_weight, stroke_color, stroke_opacity,
fill_color, fill_opacity (or a subset of these). See gmaps.PolygonOptions for docu-
mentation on possible values. Note that this only affects the initial options of polygons
added to the map by a user. To customise polygons added programatically, pass in the
options to the gmaps.Polygon constructor.

• mode (str, optional) – Initial drawing mode. One of DISABLED, MARKER, LINE,
POLYGON or DELETE. Defaults to MARKER if show_controls is True, otherwise de-
faults to DISABLED.

• show_controls (bool, optional) – Whether to show the drawing controls in the
map toolbar. Defaults to True.

Returns A gmaps.Drawing widget.

48 Chapter 6. API documentation

gmaps Documentation, Release 0.8.0

gmaps.directions_layer(start, end, waypoints=None, avoid_ferries=False, travel_mode=’DRIVING’,
avoid_highways=False, avoid_tolls=False, optimize_waypoints=False,
show_markers=True, show_route=True, stroke_color=’#0088FF’,
stroke_weight=6.0, stroke_opacity=0.6)

Create a directions layer.

Add this layer to a gmaps.Figure instance to draw directions on the map.

Examples

>>> fig = gmaps.figure()
>>> start = (46.2, 6.1)
>>> end = (47.4, 8.5)
>>> directions = gmaps.directions_layer(start, end)
>>> fig.add_layer(directions)
>>> fig

You can also add waypoints on the route:

>>> waypoints = [(46.4, 6.9), (46.9, 8.0)]
>>> directions = gmaps.directions_layer(start, end, waypoints=waypoints)

You can choose the travel mode:

>>> directions = gmaps.directions_layer(start, end, travel_mode='WALKING')

You can choose to hide the markers, the route or both:

>>> directions = gmaps.directions_layer(
start, end, show_markers=False, show_route=False)

Control how the route is displayed by changing the stroke_color, stroke_weight and stroke_opacity attributes.

>>> directions = gmaps.directions_layer(
start, end, stroke_color='red',
stroke_opacity=1.0, stroke_weight=2.0)

You can update parameters on an existing layer. This will automatically update the map:

>>> directions.travel_mode = 'DRIVING'
>>> directions.start = (46.4, 6.1)
>>> directions.stroke_color = 'green'
>>> directions.show_markers = False

Parameters

• start (2-element tuple) – (Latitude, longitude) pair denoting the start of the jour-
ney.

• end (2-element tuple) – (Latitude, longitude) pair denoting the end of the journey.

• waypoints (List of 2-element tuples, optional) – Iterable of (latitude,
longitude) pair denoting waypoints. Google maps imposes a limitation on the total number
of waypoints. This limit is currently 23. You cannot use waypoints when the travel_mode
is 'TRANSIT'.

• travel_mode (str, optional) – Choose the mode of transport. One of
'BICYCLING', 'DRIVING', 'WALKING' or 'TRANSIT'. A travel mode of
'TRANSIT' indicates public transportation. Defaults to 'DRIVING'.

6.1. Figures and layers 49

gmaps Documentation, Release 0.8.0

• avoid_ferries (bool, optional) – Avoid ferries where possible.

• avoid_highways (bool, optional) – Avoid highways where possible.

• avoid_tolls (bool, optional) – Avoid toll roads where possible.

• optimize_waypoints (bool, optional) – If set to True, will attempt to re-order
the supplied intermediate waypoints to minimize overall cost of the route.

• show_markers (bool, optional) – If set to False, the markers showing the start,
destination and waypoints are explicitly hidden. Defaults to True.

• show_route (bool, optional) – If set to False, the line indicating the route is ex-
plicitly hidden. Defaults to True.

• stroke_color (str or tuple, optional) – The stroke color of the line indicat-
ing the route. Colors can be specified as a simple string, e.g. ‘blue’, as an RGB tuple, e.g.
(100, 0, 0), or as an RGBA tuple, e.g. (100, 0, 0, 0.5). Defaults to a blue color: (0, 88, 255)

• stroke_weight (float, optional) – The width of the line indicating the route.
This is a positive float. Defaults to 6.

• stroke_opacity (float, optional) – The opacity of the stroke color. The opacity
should be a float between 0.0 (transparent) and 1.0 (opaque). 0.6 by default.

Returns A gmaps.Directions widget.

gmaps.bicycling_layer()
Bicycling layer.

Adds cycle routes and decreases the weight of main routes on the map.

Returns A gmaps.Bicycling widget.

Examples

>>> fig = gmaps.figure()
>>> fig.add_layer(gmaps.bicycling_layer())

gmaps.transit_layer()
Transit layer.

Adds information about public transport lines to the map. This only affects region for which Google has public
transport information.

Returns A gmaps.Transit widget.

Examples

map centered on London
>>> fig = gmaps.figure(center=(51.5, -0.2), zoom_level=11)
>>> fig.add_layer(gmaps.transit_layer())
>>> fig

gmaps.traffic_layer(auto_refresh=True)
Traffic layer.

Adds information about the current state of traffic to the map. This layer only works at sufficiently high zoom
levels, and for regions for which Google Maps has traffic information.

Parameters auto_refresh (bool, optional) – Whether the traffic layer refreshes with up-
dated information automatically. This is true by default.

Returns A gmaps.Traffic widget.

50 Chapter 6. API documentation

https://www.google.com/landing/transit/cities/index.html
https://www.google.com/landing/transit/cities/index.html

gmaps Documentation, Release 0.8.0

Examples

map centered on London
>>> fig = gmaps.figure(center=(51.5, -0.2), zoom_level=11)
>>> fig.add_layer(gmaps.traffic_layer())
>>> fig

6.2 Utility functions

gmaps.configure(api_key=None)
Configure access to the GoogleMaps API.

Parameters api_key – String denoting the key to use when accessing Google maps, or None to
not pass an API key.

gmaps.locations.locations_to_list(locations)
Convert from a generic iterable of locations to a list of tuples

Layer widgets only accepts lists of tuples, but we want the user to be able to pass in any reasonable iterable. We
therefore need to convert the iterable passed in.

6.3 Low level widgets

class gmaps.Figure(*args, **kwargs)
Figure widget

This is the base widget for a Figure. Prefer instantiating instances of Figure using the gmaps.figure()
factory method.

add_layer(layer)
Add a data layer to this figure.

Parameters layer – a gmaps layer.

Examples

>>> f = figure()
>>> fig.add_layer(gmaps.heatmap_layer(locations))

See also:

layer creation functions

gmaps.heatmap_layer() Create a heatmap layer

gmaps.symbol_layer() Create a layer of symbols

gmaps.marker_layer() Create a layer of markers

gmaps.geojson_layer() Create a GeoJSON layer

gmaps.drawing_layer() Create a layer of custom features, and allow users to draw on the map

gmaps.directions_layer() Create a layer with directions

gmaps.bicycling_layer() Create a layer showing cycle routes

gmaps.transit_layer() Create a layer showing public transport

6.2. Utility functions 51

gmaps Documentation, Release 0.8.0

gmaps.traffic_layer() Create a layer showing current traffic information

class gmaps.Map(**kwargs)
Base map class

Instances of this act as a base map on which you can add additional layers.

You should use the gmaps.figure() factory method to instiate a figure, rather than building this class
directly.

Parameters

• initial_viewport – Define the initial zoom level and map centre. You should con-
struct this using one of the static methods on gmaps.InitialViewport. By default,
the map is centered on the data.

• map_type (str, optional) – String representing the type of map to show. One of
‘ROADMAP’ (the classic Google Maps style) ‘SATELLITE’ (just satellite tiles with no
overlay), ‘HYBRID’ (satellite base tiles but with features such as roads and cities overlaid)
and ‘TERRAIN’ (map showing terrain features). Defaults to ‘ROADMAP’.

• mouse_handling (str, optional) – String representing how the map captures the
page’s mouse event. One of ‘COOPERATIVE’ (scroll events scroll the page without zoom-
ing the map, double clicks or CTRL/CMD+scroll zoom the map), ‘GREEDY’ (the map
captures all scroll events), ‘NONE’ (the map cannot be zoomed or panned by user ges-
tures) or ‘AUTO’ (cooperative if the notebook is displayed in an iframe, greedy otherwise).
Defaults to ‘COOPERATIVE’.

Examples

>>> m = gmaps.Map()
>>> m.add_layer(gmaps.heatmap_layer(locations))

To explicitly set the initial map zoom and center:

>>> zoom_level = 8
>>> center = (20.0, -10.0)
>>> viewport = InitialViewport.from_zoom_center(zoom_level, center)
>>> m = gmaps.Map(initial_viewport=viewport)

To have a satellite map:

>>> m = gmaps.Map(map_type='HYBRID')

You can also change this dynamically:

>>> m.map_type = 'TERRAIN'

class gmaps.InitialViewport(**metadata)
Traitlet defining the initial viewport for a map.

static from_data_bounds()
Create a viewport centered on the map’s data.

Most of the time, you should rely on the defaults provided by the gmaps.figure() factory method,
rather than creating a viewport yourself.

Examples

>>> m = gmaps.Map(initial_viewport=InitialViewport.from_data_bounds())

52 Chapter 6. API documentation

gmaps Documentation, Release 0.8.0

static from_zoom_center(zoom_level, center)
Create a viewport by explicitly setting the zoom and center

Most of the time, you should rely on the defaults provided by the gmaps.figure() factory method,
rather than creating a viewport yourself.

Parameters

• zoom_level (int) – The zoom level for the map. A value between 0 (zoomed out) and
21 (zoomed in). Note that the highest zoom levels are only available in some regions of
the world (e.g. cities).

• center (tuple of floats) – (Latitude, longitude) pair denoting the map center.

Examples

>>> zoom_level = 8
>>> center = (20.0, -10.0)
>>> viewport = InitialViewport.from_zoom_center(zoom_level, center)
>>> m = gmaps.figure(initial_viewport=viewport)

class gmaps.Heatmap(**kwargs)
Heatmap layer.

Add this to a Map instance to draw a heatmap. A heatmap shows the density of points in or near a particular
area.

You should not instantiate this directly. Instead, use the gmaps.heatmap_layer() factory function.

Parameters

• locations (iterable of latitude, longitude pairs) – Iterable of (lati-
tude, longitude) pairs denoting a single point. Latitudes are expressed as a float between -90
(corresponding to 90 degrees south) and +90 (corresponding to 90 degrees north). Longi-
tudes are expressed as a float between -180 (corresponding to 180 degrees west) and +180
(corresponding to 180 degrees east). This can be passed in as either a list of tuples, a two-
dimensional numpy array or a pandas dataframe with two columns, in which case the first
one is taken to be the latitude and the second one is taken to be the longitude.

• max_intensity (float, optional) – Strictly positive floating point number indi-
cating the numeric value that corresponds to the hottest colour in the heatmap gradient. Any
density of points greater than that value will just get mapped to the hottest colour. Setting
this value can be useful when your data is sharply peaked. It is also useful if you find that
your heatmap disappears as you zoom in.

• point_radius (int, optional) – Number of pixels for each point passed in the
data. This determines the “radius of influence” of each data point.

• dissipating (bool, optional) – Whether the radius of influence of each point
changes as you zoom in or out. If dissipating is True, the radius of influence of each point
increases as you zoom out and decreases as you zoom in. If False, the radius of influence
remains the same. Defaults to True.

• opacity (float, optional) – The opacity of the heatmap layer. Defaults to 0.6.

• gradient (list of colors, optional) – The color gradient for the heatmap.
This must be specified as a list of colors. Google Maps then interpolates linearly between
those colors. Colors can be specified as a simple string, e.g. ‘blue’, as an RGB tuple, e.g.
(100, 0, 0), or as an RGBA tuple, e.g. (100, 0, 0, 0.5).

• data (list of tuples) – DEPRECATED. Use locations instead. List of (latitude,
longitude) pairs denoting a single point. Latitudes are expressed as a float between -90

6.3. Low level widgets 53

gmaps Documentation, Release 0.8.0

(corresponding to 90 degrees south) and +90 (corresponding to 90 degrees north). Longi-
tudes are expressed as a float between -180 (corresponding to 180 degrees west) and 180
(corresponding to 180 degrees east).

Examples

>>> fig = gmaps.figure()
>>> locations = [(46.1, 5.2), (46.2, 5.3), (46.3, 5.4)]
>>> heatmap = gmaps.heatmap_layer(locations)
>>> heatmap.max_intensity = 2
>>> heatmap.point_radius = 3
>>> heatmap.gradient = ['white', 'gray']
>>> fig.add_layer(heatmap_layer)

class gmaps.WeightedHeatmap(**kwargs)
Heatmap with weighted points.

Add this layer to a Map instance to draw a heatmap. Unlike the plain Heatmap layer, which assumes that all
points should have equal weight, this layer lets you specifiy different weights for points.

You should not instantiate this directly. Instead, use the gmaps.heatmap_layer() factory function, passing
in a parameter for weights.

Parameters

• locations (iterable of latitude, longitude pairs) – Iterable of (lati-
tude, longitude) pairs denoting a single point. Latitudes are expressed as a float between -90
(corresponding to 90 degrees south) and +90 (corresponding to 90 degrees north). Longi-
tudes are expressed as a float between -180 (corresponding to 180 degrees west) and +180
(corresponding to 180 degrees east). This can be passed in as either a list of tuples, a two-
dimensional numpy array or a pandas dataframe with two columns, in which case the first
one is taken to be the latitude and the second one is taken to be the longitude.

• weights (list of floats) – List of non-negative floats corresponding to the impor-
tance of each latitude-longitude pair. Must have the same length as locations.

• max_intensity (float, optional) – Strictly positive floating point number indi-
cating the numeric value that corresponds to the hottest colour in the heatmap gradient. Any
density of points greater than that value will just get mapped to the hottest colour. Setting
this value can be useful when your data is sharply peaked. It is also useful if you find that
your heatmap disappears as you zoom in.

• point_radius (int, optional) – Number of pixels for each point passed in the
data. This determines the “radius of influence” of each data point.

• dissipating (bool, optional) – Whether the radius of influence of each point
changes as you zoom in or out. If dissipating is True, the radius of influence of each point
increases as you zoom out and decreases as you zoom in. If False, the radius of influence
remains the same. Defaults to True.

• opacity (float, optional) – The opacity of the heatmap layer. Defaults to 0.6.

• gradient (list of colors, optional) – The color gradient for the heatmap.
This must be specified as a list of colors. Google Maps then interpolates linearly between
those colors. Colors can be specified as a simple string, e.g. ‘blue’, as an RGB tuple, e.g.
(100, 0, 0), or as an RGBA tuple, e.g. (100, 0, 0, 0.5).

• data (list of tuples) – DEPRECATED. Use locations and weights instead. List
of (latitude, longitude, weight) triples for a single point. Latitudes are expressed as a float
between -90 (corresponding to 90 degrees south) and +90 (corresponding to 90 degrees

54 Chapter 6. API documentation

gmaps Documentation, Release 0.8.0

north). Longitudes are expressed as a float between -180 (corresponding to 180 degrees
west) and +180 (corresponding to 180 degrees east). Weights must be non-negative.

Examples

>>> fig = gmaps.figure()
>>> locations = [(46.1, 5.2), (46.2, 5.3), (46.3, 5.4)]
>>> weights = [0.5, 0.2, 0.8]
>>> heatmap = gmaps.heatmap_layer(locations, weights=weights)
>>> heatmap.max_intensity = 2
>>> fig.add_layer(heatmap_layer)

class gmaps.Symbol(location, **kwargs)
Class representing a single symbol.

Symbols are like markers, but the point is represented by an SVG symbol, rather than the default inverted
droplet. Symbols should be added to the map via the ‘Symbols’ widget.

class gmaps.MarkerOptions(**kwargs)
Style options for a marker

Parameters

• label (string, optional) – Text to be displayed inside the marker. Google maps
only displays the first letter of this string.

• hover_text (string, optional) – Text to be displayed when a user’s mouse is
hovering over the marker. If this is set to an empty string, nothing will appear when the
user’s mouse hovers over a marker.

• display_info_box (bool, optional) – Whether to display an info box when the
user clicks on a marker. Defaults to True if info_box_content is not an empty string,
or False otherwise.

• info_box_content (string, optional) – Content to be displayed in a box above
a marker, when the user clicks on it.

class gmaps.Marker(location, **kwargs)
Class representing a marker.

Markers should be added to the map via the gmaps.marker_layer() function or the gmaps.
drawing_layer() function.

Parameters

• location (tuple of floats) – (latitude, longitude) pair denoting the location of the
marker. Latitudes are expressed as a float between -90 (corresponding to 90 degrees south)
and +90 (corresponding to 90 degrees north). Longitudes are expressed as a float between
-180 (corresponding to 180 degrees west) and +180 (corresponding to 180 degrees east).

• label (string, optional) – Text to be displayed inside the marker. Google maps
only displays the first letter of this string.

• hover_text (string, optional) – Text to be displayed when a user’s mouse is
hovering over the marker. If this is set to an empty string, nothing will appear when the
user’s mouse hovers over a marker.

• display_info_box (bool, optional) – Whether to display an info box when the
user clicks on a marker. Defaults to True if info_box_content is not an empty string,
or False otherwise.

• info_box_content (string, optional) – Content to be displayed in a box above
a marker, when the user clicks on it.

6.3. Low level widgets 55

gmaps Documentation, Release 0.8.0

class gmaps.Markers(**kwargs)
A collection of markers or symbols.

class gmaps.GeoJsonFeature(**kwargs)
Widget for a single GeoJSON feature.

Prefer to use the geojson_layer function to construct these, rather than making them explicitly.

class gmaps.GeoJson(**kwargs)
Widget for a collection of GeoJSON features.

Prefer to use the geojson_layer function to construct this, rather than making them explicitly.

Use the features attribute on this class to change the style of the features in this layer.

class gmaps.Directions(start=None, end=None, waypoints=None, **kwargs)
Directions layer.

Add this to a gmaps.Figure instance to draw directions.

Use the gmaps.directions_layer() factory function to instantiate this class, rather than the constructor.

Examples

>>> fig = gmaps.figure()
>>> start = (46.2, 6.1)
>>> end = (47.4, 8.5)
>>> directions = gmaps.directions_layer(start, end)
>>> fig.add_layer(directions)
>>> fig

You can also add waypoints on the route:

>>> waypoints = [(46.4, 6.9), (46.9, 8.0)]
>>> directions = gmaps.directions_layer(start, end, waypoints=waypoints)

You can choose the travel mode:

>>> directions = gmaps.directions_layer(start, end, travel_mode='WALKING')

You can choose to hide the markers, the route or both:

>>> directions = gmaps.directions_layer(
start, end, show_markers=False, show_route=False)

Control how the route is displayed by changing the stroke_color, stroke_weight and stroke_opacity attributes.

>>> directions = gmaps.directions_layer(
start, end, stroke_color='red',
stroke_opacity=1.0, stroke_weight=2.0)

You can update parameters on an existing layer. This will automatically update the map:

>>> directions.travel_mode = 'DRIVING'
>>> directions.start = (46.4, 6.1)
>>> directions.stroke_color = 'green'
>>> directions.show_markers = False

Parameters

56 Chapter 6. API documentation

gmaps Documentation, Release 0.8.0

• start (2-element tuple) – (Latitude, longitude) pair denoting the start of the jour-
ney.

• end (2-element tuple) – (Latitude, longitude) pair denoting the end of the journey.

• waypoints (List of 2-element tuples, optional) – Iterable of (latitude,
longitude) pair denoting waypoints. Google maps imposes a limitation on the total number
of waypoints. This limit is currently 23. You cannot use waypoints when the travel_mode
is 'TRANSIT'.

• travel_mode (str, optional) – Choose the mode of transport. One of
'BICYCLING', 'DRIVING', 'WALKING' or 'TRANSIT'. A travel mode of
'TRANSIT' indicates public transportation. Defaults to 'DRIVING'.

• avoid_ferries (bool, optional) – Avoid ferries where possible.

• avoid_highways (bool, optional) – Avoid highways where possible.

• avoid_tolls (bool, optional) – Avoid toll roads where possible.

• optimize_waypoints (bool, optional) – If set to True, will attempt to re-order
the supplied intermediate waypoints to minimize overall cost of the route.

• show_markers (bool, optional) – If set to False, the markers showing the start,
destination and waypoints are explicitly hidden. Defaults to True.

• show_route (bool, optional) – If set to False, the line indicating the route is ex-
plicitly hidden. Defaults to True.

• stroke_color (str or tuple, optional) – The stroke color of the line indicat-
ing the route. Colors can be specified as a simple string, e.g. ‘blue’, as an RGB tuple, e.g.
(100, 0, 0), or as an RGBA tuple, e.g. (100, 0, 0, 0.5). Defaults to a blue color: (0, 88, 255)

• stroke_weight (float, optional) – The width of the line indicating the route.
This is a positive float. Defaults to 6.

• stroke_opacity (float, optional) – The opacity of the stroke color. The opacity
should be a float between 0.0 (transparent) and 1.0 (opaque). 0.6 by default.

class gmaps.Bicycling(**kwargs)
Bicycling layer.

Add this to a gmaps.Map or gmaps.Figure instance to add cycling routes.

You should not instantiate this directly. Instead, use the gmaps.bicycling_layer() factory function.

Examples

>>> fig = gmaps.figure()
>>> fig.add_layer(gmaps.bicycling_layer())

class gmaps.Transit(**kwargs)
Transit layer.

Add this to a gmaps.Map or a gmaps.Figure instance to add transit (public transport) information. This
only affects regions for which Google has transit information.

You should not instantiate this directly. Instead, use the gmaps.transit_layer() factory function.

Examples

6.3. Low level widgets 57

https://www.google.com/landing/transit/cities/index.html

gmaps Documentation, Release 0.8.0

map centered on London
>>> fig = gmaps.figure(center=(51.5, -0.2), zoom_level=11)
>>> fig.add_layer(gmaps.transit_layer())
>>> fig

class gmaps.Traffic(**kwargs)
Traffic layer

Add this to a gmaps.Map or a gmaps.Figure instance to add traffic information to the map, where sup-
ported.

You should not instantiate this directly. Instead, use the gmaps.traffic_layer() factory function.

Examples

map centered on London
>>> fig = gmaps.figure(center=(51.5, -0.2), zoom_level=11)
>>> fig.add_layer(gmaps.traffic_layer())
>>> fig

Parameters auto_refresh (bool, optional) – Whether the traffic layer refreshes with up-
dated information automatically. This is true by default.

class gmaps.Drawing(**kwargs)
Widget for a drawing layer

Add this to a gmaps.Map or gmaps.Figure instance to let you draw on the map.

You should not need to instantiate this directly. Instead, use the gmaps.drawing_layer() factory function.

Examples

You can use the drawing layer to add lines, markers and polygons to a map:

>>> fig = gmaps.figure()
>>> drawing = gmaps.drawing_layer(features=[

gmaps.Line((46.23, 5.86), (46.44, 5.24), stroke_weight=3.0),
gmaps.Marker((46.88, 5.45), label='D'),
gmaps.Polygon(

[(46.72, 6.06), (46.48, 6.49), (46.79, 6.91)],
fill_color='red'

)
])
>>> fig.add_layer(drawing)
>>> fig

You can also use the drawing layer as a way to get user input. The user can draw features on the map. You can
then get the list of features programatically.

>>> fig = gmaps.figure()
>>> drawing = gmaps.drawing_layer()
>>> fig.add_layer(drawing)
>>> fig
>>> # Now draw on the map
>>> drawing.features
[Marker(location=(46.83, 5.56)),
Marker(location=(46.46, 5.91)),
Line(end=(46.32, 5.98), start=(46.42, 5.12))]

58 Chapter 6. API documentation

gmaps Documentation, Release 0.8.0

You can bind callbacks that are executed when a new feature is added. For instance, you can use geopy to get
the address corresponding to markers that you add on the map:

API_KEY = "Aiz..."

import gmaps
import geopy

gmaps.configure(api_key=API_KEY)
fig = gmaps.figure()
drawing = gmaps.drawing_layer()

geocoder = geopy.geocoders.GoogleV3(api_key=API_KEY)

def print_address(feature):
try:

print(geocoder.reverse(feature.location, exactly_one=True))
except AttributeError as e:

Not a marker
pass

drawing.on_new_feature(print_feature)
fig.add_layer(drawing)
fig # display the figure

Parameters

• features (list of features, optional) – List of features to draw on the map.
Features must be one of gmaps.Marker, gmaps.Line or gmaps.Polygon.

• marker_options (gmaps.MarkerOptions, dict or None, optional) – Options
controlling how markers are drawn on the map. Either pass in an instance of
gmaps.MarkerOptions, or a dictionary with keys hover_text, display_info_box,
info_box_content, label (or a subset of these). See gmaps.MarkerOptions for docu-
mentation on possible values. Note that this only affects the initial options of markers added
to the map by a user. To customise markers added programatically, pass in the options to
the gmaps.Marker constructor.

• line_options (gmaps.LineOptions, dict or None, optional) – Options controlling
how new lines are drawn on the map. Either pass in an instance of gmaps.LineOptions,
or a dictionary with keys stroke_weight, stroke_color, stroke_opacity (or a subset of these).
See gmaps.LineOptions for documentation on possible values. Note that this only
affects the initial options of lines added to the map by a user. To customise lines added
programatically, pass in the options to the gmaps.Line constructor.

• polygon_options (gmaps.PolygonOptions, dict or None, optional) – Options
controlling how new polygons are drawn on the map. Either pass in an instance of gmaps.
PolygonOptions, or a dictionary with keys stroke_weight, stroke_color, stroke_opacity,
fill_color, fill_opacity (or a subset of these). See gmaps.PolygonOptions for docu-
mentation on possible values. Note that this only affects the initial options of polygons
added to the map by a user. To customise polygons added programatically, pass in the
options to the gmaps.Polygon constructor.

• mode (str, optional) – Initial drawing mode. One of DISABLED, MARKER,
LINE, POLYGON or DELETE. Defaults to MARKER if toolbar_controls.
show_controls is True, otherwise defaults to DISABLED.

• toolbar_controls (gmaps.DrawingControls, optional) – Widget representing

6.3. Low level widgets 59

http://geopy.readthedocs.io/en/latest/

gmaps Documentation, Release 0.8.0

the drawing toolbar.

on_new_feature(callback)
Register a callback called when new features are added

Parameters callback (callable) – Callable to be called when a new feature is added. The
callback should take a single argument, the feature that has been added. This can be an
instance of gmaps.Line, gmaps.Marker or gmaps.Polygon.

class gmaps.DrawingControls(**kwargs)
Widget for the toolbar snippet representing the drawing controls

Parameters show_controls (bool, optional) – Whether the drawing controls should be
shown. Defaults to True.

class gmaps.Line(start, end, stroke_color=’#696969’, stroke_weight=2.0, stroke_opacity=0.6)
Widget representing a single line on a map

Add this line to a map via the gmaps.drawing_layer() function, or by passing it directly to the .
features array of an existing instance of gmaps.Drawing.

Examples

>>> fig = gmaps.figure()
>>> drawing = gmaps.drawing_layer(features=[

gmaps.Line((46.44, 5.24), (46.23, 5.86), stroke_color='green'),
gmaps.Line((48.44, 1.32), (47.13, 3.91), stroke_weight=5.0)

])
>>> fig.add_layer(drawing)

You can also add a line to an existing gmaps.Drawing instance:

>>> fig = gmaps.figure()
>>> drawing = gmaps.drawing_layer()
>>> fig.add_layer(drawing)
>>> fig # display the figure

You can now add lines directly on the map:

>>> drawing.features = [
gmaps.Line((46.44, 5.24), (46.23, 5.86), stroke_color='green'),
gmaps.Line((48.44, 1.32), (47.13, 3.91), stroke_weight=5.0)

]

Parameters

• start (tuple of floats) – (latitude, longitude) pair denoting the start of the line.
Latitudes are expressed as a float between -90 (corresponding to 90 degrees south) and
+90 (corresponding to 90 degrees north). Longitudes are expressed as a float between -180
(corresponding to 180 degrees west) and +180 (corresponding to 180 degrees east).

• end – (latitude, longitude) pair denoting the end of the line. Latitudes are expressed as a
float between -90 (corresponding to 90 degrees south) and +90 (corresponding to 90 degrees
north). Longitudes are expressed as a float between -180 (corresponding to 180 degrees
west) and +180 (corresponding to 180 degrees east).

• stroke_color (str or tuple, optional) – The stroke color of the line. Colors
can be specified as a simple string, e.g. ‘blue’, as an RGB tuple, e.g. (100, 0, 0), or as an
RGBA tuple, e.g. (100, 0, 0, 0.5). Defaults to a grey color: (69, 69, 69)

60 Chapter 6. API documentation

gmaps Documentation, Release 0.8.0

• stroke_weight (float, optional) – How wide the line is. This is a positive float.
Defaults to 2.

• stroke_opacity (float, optional) – The opacity of the stroke color. The opacity
should be a float between 0.0 (transparent) and 1.0 (opaque). 0.6 by default.

class gmaps.LineOptions(*args, **kwargs)
Style options for a line

Pass an instance of this class to gmaps.drawing_layer() to control the style of new user-drawn lines on
the map.

Examples

>>> fig = gmaps.figure()
>>> drawing = gmaps.drawing_layer(

marker_options=gmaps.MarkerOptions(hover_text='some text'),
line_options=gmaps.LineOptions(stroke_color='red')

)
>>> fig.add_layer(drawing)
>>> fig # display the figure

Parameters

• stroke_color (str or tuple, optional) – The stroke color of the line. Colors
can be specified as a simple string, e.g. ‘blue’, as an RGB tuple, e.g. (100, 0, 0), or as an
RGBA tuple, e.g. (100, 0, 0, 0.5). Defaults to a grey color: (69, 69, 69)

• stroke_weight (float, optional) – How wide the line is. This is a positive float.
Defaults to 2.

• stroke_opacity (float, optional) – The opacity of the stroke color. The opacity
should be a float between 0.0 (transparent) and 1.0 (opaque). 0.6 by default.

class gmaps.Polygon(path, stroke_color=’#696969’, stroke_weight=2.0, stroke_opacity=0.6,
fill_color=’#696969’, fill_opacity=0.2)

Widget representing a closed polygon on a map

Add this polygon to a map via the gmaps.drawing_layer() function, or by passing it directly to the
.features array of an existing instance of gmaps.Drawing.

Examples

>>> fig = gmaps.figure()
>>> drawing = gmaps.drawing_layer(features=[

gmaps.Polygon(
[(46.72, 6.06), (46.48, 6.49), (46.79, 6.91)],
stroke_color='red', fill_color=(255, 0, 132)

)
])
>>> fig.add_layer(drawing)

You can also add a polygon to an existing gmaps.Drawing instance:

>>> fig = gmaps.figure()
>>> drawing = gmaps.drawing_layer()
>>> fig.add_layer(drawing)
>>> fig # display the figure

6.3. Low level widgets 61

gmaps Documentation, Release 0.8.0

You can now add polygons directly on the map:

>>> drawing.features = [
gmaps.Polygon(

[(46.72, 6.06), (46.48, 6.49), (46.79, 6.91)]
stroke_color='red', fill_color=(255, 0, 132)

)
]

Parameters

• path (list of tuples of floats) – List of (latitude, longitude) pairs denoting
each point on the polygon. Latitudes are expressed as a float between -90 (corresponding to
90 degrees south) and +90 (corresponding to 90 degrees north). Longitudes are expressed as
a float between -180 (corresponding to 180 degrees west) and +180 (corresponding to 180
degrees east).

• stroke_color (str or tuple, optional) – The stroke color of the line. Colors
can be specified as a simple string, e.g. ‘blue’, as an RGB tuple, e.g. (100, 0, 0), or as an
RGBA tuple, e.g. (100, 0, 0, 0.5). Defaults to a grey color: (69, 69, 69)

• stroke_weight (float, optional) – How wide the line is. This is a positive float.
Defaults to 2.

• stroke_opacity (float, optional) – The opacity of the stroke color. The opacity
should be a float between 0.0 (transparent) and 1.0 (opaque). 0.6 by default.

• fill_color (str or tuple, optional) – The internal color of the polygon. Col-
ors can be specified as a simple string, e.g. ‘blue’, as an RGB tuple, e.g. (100, 0, 0), or as
an RGBA tuple, e.g. (100, 0, 0, 0.5). Defaults to a grey color: (69, 69, 69)

• fill_opacity (float, optional) – The opacity of the fill color. The opacity
should be a float between 0.0 (transparent) and 1.0 (opaque). 0.2 by default.

class gmaps.PolygonOptions(*args, **kwargs)
Style options for a polygon.

Pass an instance of this class to gmaps.drawing_layer() to control the style of new user-drawn polygons
on the map.

Examples

>>> fig = gmaps.figure()
>>> drawing = gmaps.drawing_layer(

polygon_options=gmaps.PolygonOptions(
stroke_color='red', fill_color=(255, 0, 132))

)
>>> fig.add_layer(drawing)
>>> fig # display the figure

Parameters

• stroke_color (str or tuple, optional) – The stroke color of the line. Colors
can be specified as a simple string, e.g. ‘blue’, as an RGB tuple, e.g. (100, 0, 0), or as an
RGBA tuple, e.g. (100, 0, 0, 0.5). Defaults to a grey color: (69, 69, 69)

• stroke_weight (float, optional) – How wide the line is. This is a positive float.
Defaults to 2.

62 Chapter 6. API documentation

gmaps Documentation, Release 0.8.0

• stroke_opacity (float, optional) – The opacity of the stroke color. The opacity
should be a float between 0.0 (transparent) and 1.0 (opaque). 0.6 by default.

• fill_color (str or tuple, optional) – The internal color of the polygon. Col-
ors can be specified as a simple string, e.g. ‘blue’, as an RGB tuple, e.g. (100, 0, 0), or as
an RGBA tuple, e.g. (100, 0, 0, 0.5). Defaults to a grey color: (69, 69, 69)

• fill_opacity (float, optional) – The opacity of the fill color. The opacity
should be a float between 0.0 (transparent) and 1.0 (opaque). 0.2 by default.

6.4 Datasets

gmaps.datasets.list_datasets()
List of datasets available

gmaps.datasets.dataset_metadata(dataset_name)
Information about the dataset

This returns a dictionary containing a ‘description’, a list of the dataset headers and optionally information about
the dataset source.

Examples

>>> dataset_metadata("earthquakes")
{'description': 'Taxi pickup location data in San Francisco',
'headers': ['latitude', 'longitude']}

gmaps.datasets.load_dataset(dataset_name)
Fetch a dataset, returning an array of tuples.

gmaps.datasets.load_dataset_as_df(dataset_name)
Fetch a dataset, returning a pandas dataframe.

6.5 GeoJSON geometries

gmaps.geojson_geometries.list_geometries()
List of GeoJSON geometries available

gmaps.geojson_geometries.geometry_metadata(geometry_name)
Information about the geometry.

This returns a dictionary containing a ‘description’.

Examples

>>> geometry_metadata("countries")
{'description': 'Map of world countries'}

gmaps.geojson_geometries.load_geometry(geometry_name)
Fetch a geometry.

Returns A python dictionary containing the geometry.

Examples

6.4. Datasets 63

gmaps Documentation, Release 0.8.0

>>> import gmaps
>>> import gmaps.geojson_geometries
>>> gmaps.configure(api_key="AIza...")
>>> countries_geojson = gmaps.geojson_geometries.load_geometry('countries')

>>> fig = gmaps.figure()
>>> gini_layer = gmaps.geojson_layer(countries_geojson)
>>> fig.add_layer(gini_layer)
>>> fig

6.6 Traitlets

class gmaps.geotraitlets.ColorAlpha(default_value=traitlets.Undefined, allow_none=False,
**metadata)

Trait representing a color that can be passed to Google maps.

This is either a string like ‘blue’ or ‘#aabbcc’ or an RGB tuple like (100, 0, 250) or an RGBA tuple like (100, 0,
250, 0.5).

validate(obj, value)
Verifies that ‘value’ is a string or tuple and converts it to a value like ‘rgb(x,y,z)’

class gmaps.geotraitlets.ColorString(default_value=traitlets.Undefined, allow_none=False,
read_only=None, help=None, config=None,
**kwargs)

A string holding a color recognized by Google Maps.

Apparently Google Maps accepts ‘all CSS3 colors, including RGBA, [. . .] except for extended named colors
and HSL(A) values’.

Using this <https://www.w3.org/TR/css3-color/#html4> page for reference.

default_value = traitlets.Undefined

class gmaps.geotraitlets.Latitude(default_value=traitlets.Undefined, allow_none=False,
**kwargs)

Float representing a latitude

Latitude values must be between -90 and 90.

default_value = traitlets.Undefined

class gmaps.geotraitlets.Longitude(default_value=traitlets.Undefined, allow_none=False,
**kwargs)

Float representing a longitude

Longitude values must be between -180 and 180.

default_value = traitlets.Undefined

class gmaps.geotraitlets.MapType(default_value, **kwargs)
String representing a map type

class gmaps.geotraitlets.MouseHandling(default_value, **kwargs)
String representing valid values for mouse handling

class gmaps.geotraitlets.Point(default_value=traitlets.Undefined)
Tuple representing a (latitude, longitude) pair.

64 Chapter 6. API documentation

gmaps Documentation, Release 0.8.0

class gmaps.geotraitlets.ZoomLevel(default_value=traitlets.Undefined, allow_none=False,
**kwargs)

Integer representing a zoom value allowed by Google Maps

default_value = traitlets.Undefined

6.6. Traitlets 65

gmaps Documentation, Release 0.8.0

66 Chapter 6. API documentation

CHAPTER 7

Contributing to jupyter-gmaps

7.1 Contributing

We want to start by thanking you for using Jupyter-gmaps. We very much appreciate all of the users who catch bugs,
contribute enhancements and features or add to the documentation. Every contribution is meaningful, so thank you for
participating.

7.1.1 How to contribute

Code contributions are more than welcome. Take a look at the issue tracker, specially issues labelled as beginner-
friendly. These are issues which have a lot of impact on the project, but don’t require understanding the entire codebase.

Beyond code, the following contributions will make gmaps a better project:

• additional datasets related to geographical data. The data needs to be clean, of reasonable size (ideally not more
than 1MB), and should be clearly related to geography.

• additional GeoJSON geometries. These should be clean and reasonably small (ideally 1-3MB).

• Examples of you using Jupyter-gmaps. If you’ve used gmaps and have an artefact to show for it (a blogpost or
an image), I’m very happy to put a link in the documentation.

7.1.2 Installing a development version of gmaps

See the installation instructions for installing a development version.

7.1.3 Testing

We use nose for unit testing. Run nosetests in the root directory of the project to run all the tests, or in a specific
directory to just run the tests in that directory.

67

https://github.com/pbugnion/gmaps/issues
http://jupyter-gmaps.readthedocs.io/en/latest/install.html#development-version

gmaps Documentation, Release 0.8.0

7.1.4 Guidelines

Workflow

We loosely follow the git workflow used in numpy development. Features should be developed in separate branches
and merged into the master branch when complete.

Code

Please follow the PEP8 conventions for formatting and indenting code and for variable names.

7.2 How to release jupyter-gmaps

This is a set of instructions for releasing to Pypi. The release process is somewhat automated with an invoke task file.
You will need invoke installed.

• Run invoke prerelease <version>, where version is the version number of the release candidate.
If you are aiming to release version 0.5.0, this will be 0.5.0-rc1. This will automatically bump the version
numbers and upload the release to Pypi and NPM. Unfortunately, Pypi does not recognize this as a pre-release,
and therefore gives it more precendence than the previous, stable release. To correct this, go to the gmaps page
on Pypi, then go to the releases tab and manually hide that release and un-hide the previous one.

• Verify that you can install the new version and that it works correctly with pip install gmaps==<new
version> and jupyter nbextension enable --py --sys-prefix gmaps. It’s best to verify
the installation on a clean virtual machine (rather than just in a new environment) since installation is more
complex than for pure Python packages.

• If the manual installation tests failed, fix the issue and repeat the previous steps with rc2 etc. If installing
worked, proceed to the next steps.

• Run invoke release <version>, where version is the version number of the release (e.g. 0.5.0).
You will be prompted to enter a changelog.

• Verify that the new version is available by running pip install gmaps in a new virtual environment.

• Run invoke postrelease <version>, where version is the version number of the new release. This
will commit the changes in version, add an annotated tag from the changelog and push the changes to Github.
It will then change the version back to a -dev version.

• Run invoke release_conda <version> to release the new version to conda-forge.

68 Chapter 7. Contributing to jupyter-gmaps

http://docs.scipy.org/doc/numpy/dev/gitwash/development_workflow.html
http://www.python.org/dev/peps/pep-0008/
http://docs.pyinvoke.org/en/latest/getting_started.html

CHAPTER 8

Release notes

8.1 Version 0.8.0

This minor release:

• Changes the directions layer widget to add the start, end and waypoints traitlets. This deprecates the data traitlet,
scheduled for removal in 0.9.0. (PR 236).

• The directions layer now reacts to changes in start, end and waypoints by re-calculating the route (PR 239)

• The directions layer now supports styling the route (PR 247)

• Errors in the direction layer are now shown in the error box, rather than as an uncatchable exception (PR 242)

• Errors authenticating result in an error message that replaces the map, rather than the cryptic ‘Oops, something
went wrong’ default that Google Maps provides (PR 240)

• Adds style to error box (PR 243)

• Removes the deprecated data traitlet from the Heatmap and WeightedHeatmap widgets. See PR 249 for a
migration pathway. (PR 249)

• Introduces the Opacity traitlet for encoding stroke and fill opacities (PR 248)

8.2 Version 0.7.4

This minor release:

• allows setting which map type we use (PR 232)

• allows setting how the map interacts with the webpage, in terms of capturing scroll events (PR 232)

• allows setting the style of polygons on the drawing layer (PR 229)

• fixes a bug that stopped the drawing layer from being downloadable as a PNG (PR 227)

69

gmaps Documentation, Release 0.8.0

8.3 Version 0.7.3

This release: - simplifies setting the width and height for a figure. We now do

not need to explicitly set the width and height of the embedded map (PR 221).

• allows customising the style of lines added to the map in the drawing layer (PR 225).

8.4 Version 0.7.2

This release adds support for JupyterLab (PR 218).

8.5 Version 0.7.1

This minor release:

• Deprecates the .data traitlet in heatmaps and weighted heatmaps in favour of .locations (for heatmap) and
.locations and .weights. These now have validation, so a user can pass in a dataframe or numpy array (PR 211).

• React to changes in the new .locations and .weights traitlets to actually update heatmaps dynamically. (PR 212).

• Reduces page load size in documentation by compressing the images (PR 217).

8.6 Version 0.7.0

• This minor release adds a drawing layer, giving the user the ability to add

arbitrary lines, markers and polygons to a map. The developer can bind callbacks that are run when a feature is added,
allowing the development of complex, widgets- based application on top of jupyter-gmaps (PR 183). - It fixes a bug
where the bounds were incorrectly calculated when two longitudes coincided (PR 204). - It fixes a bug where, for
single latitudes, the returned bounds could stretch beyond what Google Maps allows (PR 204)

8.7 Version 0.6.2

This minor release:

• fixes a bug that was introduced by shadowing a reserved traitlets method (PR 184)

• migrates the codebase to flake8 3.5.0 (PR 195)

8.8 Version 0.6.1

This is a patch release that is identical to 0.6.0. The dependencies in the conda-forge release of 0.6.0 were badly
specified.

70 Chapter 8. Release notes

gmaps Documentation, Release 0.8.0

8.9 Version 0.6.0

This release:

• PRs 166, 171 and 172 migrate jupyter-gmaps to ipywidgets 7.0.0 (released on the 18th August 2017). This
is a breaking change: jupyter-gmaps will not work with ipywidgets 6.x versions.

• PRs 163 and 169 add a layer for displaying bicycling information.

• PRs 165 and 169 add a layer for displaying transit (public transport) information.

• PR 170 adds a layer for displaying traffic information.

• PR 173 improves the layout of the CSS

• PR 173 improves the CSS used for embedding

8.10 Version 0.5.4

This release:

• Fixes a bug where bounds were incorrectly calculated for the case where there was a single point in the
data (PR 160).

• Allows setting the travel mode in the directions layer (PR 157).

• Fixes the release script to use a fork of the conda-forge feedstock (PR 156).

8.11 Version 0.5.3

This release adds two minor features:

• The directions layer can be customised, in particular how the route is calculated ([PR 153](https://github.
com/pbugnion/gmaps/pull/153))

• The user can explicitly set the map zoom and center ([PR 154](https://github.com/pbugnion/gmaps/pull/
154))

It also makes the following non-breaking changes:

• Refactor JS to use ES6 classes.

8.12 Version 0.5.3

This release adds two minor features:

• The directions layer can be customised, in particular how the route is calculated ([PR 153](https://github.
com/pbugnion/gmaps/pull/153))

• The user can explicitly set the map zoom and center ([PR 154](https://github.com/pbugnion/gmaps/pull/
154))

It also makes the following non-breaking changes:

• Refactor JS to use ES6 classes.

8.9. Version 0.6.0 71

https://github.com/pbugnion/gmaps/pull/153
https://github.com/pbugnion/gmaps/pull/153
https://github.com/pbugnion/gmaps/pull/154
https://github.com/pbugnion/gmaps/pull/154
https://github.com/pbugnion/gmaps/pull/153
https://github.com/pbugnion/gmaps/pull/153
https://github.com/pbugnion/gmaps/pull/154
https://github.com/pbugnion/gmaps/pull/154

gmaps Documentation, Release 0.8.0

8.13 Version 0.5.2

This is a bugfix release.

• Bounds are now calculated correctly when there are multiple layers (PR 148).

• Latitude bounds cannot exceed the maximum allowed by Google Maps (PR 149).

• Alpha values of 1.0 are now allowed.

8.14 Version 0.5.1

This patch release:

• fixes flakiness downloading images as PNGs (issue 129).

• adds an error box view for errors that come up in the frontend.

It adds improvements to the development workflow:

• License is included in the source to facilicate deployment to conda-forge

• Facilitate installation in dev mode.

• Automation of release process.

8.15 Version 0.5.0

This release:

• introduces a new Figure widget that wraps a toolbar and a map

• adds the ability to export maps to PNG

• fixes bugs and outdated dependencies that prevented embedding maps in rendered HTML.

8.16 Version 0.4.1

• Add a GeoJSON layer (PRs #106 and #115)

• Add the geojson_geometries module for bundling GeoJSON geometries with jupyter-gmaps (PR #111).

• Minor improvements to README and compatibility guide.

• Support for Python 3.6 (PR #107).

8.17 Version 0.4.0

• Add factory functions to make creating layers easier. Instead of creating widgets directly, the widgets are instantiated through *_layer() functions which are easier to use and more tolerant of user input. This fixes:

– passing arbitrary iterables to the factory function (issue #66)

– passing more complex sets of options (issue #65)

• The directions interface is now a first class layer (issue #64)

72 Chapter 8. Release notes

gmaps Documentation, Release 0.8.0

• A regression whereby the API documentation wasn’t building on readthedocs is now fixed (PR #105).

8.18 Version 0.3.6

• Adds info boxes to the marker and symbol layers (PR #98).

8.19 Version 0.3.5

• Bugfix in deprecated heatmap method (PR #89).

8.20 Version 0.3.4

• Add marker and symbol layer (PR #78)

• Fix bug involving incorrect latitude bound calculation.

8.21 Version 0.3.3

• Improve automatic bounds calculations for heatmaps (PR #84)

8.22 Version 0.3.2

• Allow setting heatmap options (issues #74)

• Basic unit tests for traitlets, mixins and datasets

• Continuous integration with Travis CI.

8.23 Version 0.3.1

Fix release to allow injecting Google maps API keys. Google maps now mandates API keys, so this release provides
a way to pass in a key (issue #61).

This release also includes a fix for having multiple layers on the same map.

8.24 Version 0.3.0

Complete re-write of gmaps to work with IPython 4.2 and ipywidgets 5.x. This release is at feature parity with the
previous release, but the interface differs:

• Maps are now built up from a base to which we add layers.

• Heatmaps and weighted heatmaps are now layers that can be added to the base map.

• Add the acled_africa dataset to demonstrate heatmaps with a substantial amount of data.

8.18. Version 0.3.6 73

gmaps Documentation, Release 0.8.0

• Now fits into the Jupyter installation convention for widget extensions.

• Add sphinx documentation

• Remove example notebooks (these may be added back in a later release)

8.25 Version 0.2.2

• Remove dependency on Numpy

• Fix broken datasets example (issue #52)

8.26 Version 0.2.1

test release – no changes.

8.27 Version 0.2

• IPython 4.0 compatibility

• Python 3 compatibility

• Drop IPython 2.x compatibility

8.28 Version 0.1.6

Fixed typo in setup script.

8.29 Version 0.1.5

Weighted heatmaps and datasets

• Added possibility of including weights in heatmap data.

• Added a datasets module to allow new users to play around with data without having to find their own dataset.

8.30 Version 0.1.4

Another bugfix release.

• Fixed a bug that arose when using heatmap with default values of some of the parameters.

74 Chapter 8. Release notes

gmaps Documentation, Release 0.8.0

8.31 Version 0.1.3

Bugfix release.

• Fixed a bug that arose when using the heatmap with IPython2.3 in the previous release. The bug was caused by
the slightly different traitlets API between the two IPython versions.

8.32 Version 0.1.2

Minor heatmap improvements.

• Exposed the ‘maxIntensity’ and ‘radius’ options for heatmaps.

8.33 Version 0.1.1

Bugfix release.

• Ensures the notebook extensions are actually included in the source distribution.

8.34 Version 0.1

Initial release.

• Allows plotting heatmaps from a list / array of pairs of longitude, latitude floats on top of a Google Map.

8.31. Version 0.1.3 75

gmaps Documentation, Release 0.8.0

76 Chapter 8. Release notes

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

77

gmaps Documentation, Release 0.8.0

78 Chapter 9. Indices and tables

Python Module Index

g
gmaps.datasets, 63
gmaps.geojson_geometries, 63
gmaps.geotraitlets, 64

79

gmaps Documentation, Release 0.8.0

80 Python Module Index

Index

A
add_layer() (gmaps.Figure method), 51

B
Bicycling (class in gmaps), 57
bicycling_layer() (in module gmaps), 50

C
ColorAlpha (class in gmaps.geotraitlets), 64
ColorString (class in gmaps.geotraitlets), 64
configure() (in module gmaps), 51

D
dataset_metadata() (in module gmaps.datasets), 63
default_value (gmaps.geotraitlets.ColorString attribute),

64
default_value (gmaps.geotraitlets.Latitude attribute), 64
default_value (gmaps.geotraitlets.Longitude attribute), 64
default_value (gmaps.geotraitlets.ZoomLevel attribute),

65
Directions (class in gmaps), 56
directions_layer() (in module gmaps), 48
Drawing (class in gmaps), 58
drawing_layer() (in module gmaps), 47
DrawingControls (class in gmaps), 60

F
Figure (class in gmaps), 51
figure() (in module gmaps), 41
from_data_bounds() (gmaps.InitialViewport static

method), 52
from_zoom_center() (gmaps.InitialViewport static

method), 52

G
GeoJson (class in gmaps), 56
geojson_layer() (in module gmaps), 46
GeoJsonFeature (class in gmaps), 56

geometry_metadata() (in module
gmaps.geojson_geometries), 63

gmaps.datasets (module), 63
gmaps.geojson_geometries (module), 63
gmaps.geotraitlets (module), 64

H
Heatmap (class in gmaps), 53
heatmap_layer() (in module gmaps), 42

I
InitialViewport (class in gmaps), 52

L
Latitude (class in gmaps.geotraitlets), 64
Line (class in gmaps), 60
LineOptions (class in gmaps), 61
list_datasets() (in module gmaps.datasets), 63
list_geometries() (in module gmaps.geojson_geometries),

63
load_dataset() (in module gmaps.datasets), 63
load_dataset_as_df() (in module gmaps.datasets), 63
load_geometry() (in module gmaps.geojson_geometries),

63
locations_to_list() (in module gmaps.locations), 51
Longitude (class in gmaps.geotraitlets), 64

M
Map (class in gmaps), 52
MapType (class in gmaps.geotraitlets), 64
Marker (class in gmaps), 55
marker_layer() (in module gmaps), 45
MarkerOptions (class in gmaps), 55
Markers (class in gmaps), 56
MouseHandling (class in gmaps.geotraitlets), 64

O
on_new_feature() (gmaps.Drawing method), 60

81

gmaps Documentation, Release 0.8.0

P
Point (class in gmaps.geotraitlets), 64
Polygon (class in gmaps), 61
PolygonOptions (class in gmaps), 62

S
Symbol (class in gmaps), 55
symbol_layer() (in module gmaps), 43

T
Traffic (class in gmaps), 58
traffic_layer() (in module gmaps), 50
Transit (class in gmaps), 57
transit_layer() (in module gmaps), 50

V
validate() (gmaps.geotraitlets.ColorAlpha method), 64

W
WeightedHeatmap (class in gmaps), 54

Z
ZoomLevel (class in gmaps.geotraitlets), 64

82 Index

	Installation
	Installing jupyter-gmaps with conda
	Installing jupyter-gmaps with pip
	Installing jupyter-gmaps for JupyterLab
	Development version
	Source code

	Authentication
	Getting started
	Basic concepts
	Base maps
	Customising map width, height and layout
	Heatmaps
	Weighted heatmaps
	Markers and symbols
	GeoJSON layer
	Drawing markers, lines and polygons
	Directions layer
	Bicycling, transit and traffic layers

	Building applications with jupyter-gmaps
	Reacting to user actions on the map
	Updating data in response to other widgets

	Exporting maps
	Exporting to PNG
	Exporting to HTML

	API documentation
	Figures and layers
	Utility functions
	Low level widgets
	Datasets
	GeoJSON geometries
	Traitlets

	Contributing to jupyter-gmaps
	Contributing
	How to release jupyter-gmaps

	Release notes
	Version 0.8.0
	Version 0.7.4
	Version 0.7.3
	Version 0.7.2
	Version 0.7.1
	Version 0.7.0
	Version 0.6.2
	Version 0.6.1
	Version 0.6.0
	Version 0.5.4
	Version 0.5.3
	Version 0.5.3
	Version 0.5.2
	Version 0.5.1
	Version 0.5.0
	Version 0.4.1
	Version 0.4.0
	Version 0.3.6
	Version 0.3.5
	Version 0.3.4
	Version 0.3.3
	Version 0.3.2
	Version 0.3.1
	Version 0.3.0
	Version 0.2.2
	Version 0.2.1
	Version 0.2
	Version 0.1.6
	Version 0.1.5
	Version 0.1.4
	Version 0.1.3
	Version 0.1.2
	Version 0.1.1
	Version 0.1

	Indices and tables
	Python Module Index

