

jupyter-gmaps

	Installation
	Installing gmaps with conda

	Installing gmaps with pip

	Development version

	Source code

	Authentication

	Getting started
	Basic concepts

	Base maps

	Heatmaps

	Weighted heatmaps

	Markers and symbols

	GeoJSON layer

	Drawing markers, lines and polygons

	Directions layer

	Bicycling, transit and traffic layers

	Building applications with jupyter-gmaps
	Reacting to user actions on the map

	Exporting maps
	Exporting to PNG

	Exporting to HTML

	API documentation
	Figures and layers

	Utility functions

	Low level widgets

	Datasets

	GeoJSON geometries

	Traitlets

	Contributing to jupyter-gmaps
	Contributing

	How to release jupyter-gmaps

	Release notes

Indices and tables

	Index

	Module Index

	Search Page

Installation

Installing gmaps with conda

The easiest way to install gmaps is with conda:

$ conda install -c conda-forge gmaps

Installing gmaps with pip

If you do not use conda, you can install gmaps with pip. The current version
of gmaps is only tested with IPython 4.2 or later and ipywidgets 6.0.0 or
later. To upgrade to the latest versions, use:

$ pip install -U jupyter

Make sure that you have enabled widgets extensions to Jupyter:

$ jupyter nbextension enable --py --sys-prefix widgetsnbextension

You can then install gmaps with:

$ pip install gmaps

Then tell Jupyter to load the extension with:

$ jupyter nbextension enable --py --sys-prefix gmaps

Development version

You must have NPM [https://www.npmjs.com] to install the development version. You can install NPM with your package manager.

We strongly recommend installing jupyter-gmaps in a virtual environment (either a conda environment or a virtualenv environment).

Clone the git repository by running:

$ git clone https://github.com/pbugnion/gmaps.git

For the initial installation, run:

$./dev-install

This installs gmaps in editable mode and installs the Javascript components as symlinks.

If you then make changes to the code, you can make those changes available to a running notebook server by:

	restarting the kernel if you have made changes to the Python source code

	running npm run update in the js/ directory and refreshing the browser page containing the notebook if you have made changes to the JavaScript source. You do not need to restart the kernel.

	running npm run update, refreshing the browser and restarting the kernel if you have made changes to both the Python and JavaScript source.

You should not need to restart the notebook server.

Source code

The jupyter-gmaps source is available on GitHub [https://github.com/pbugnion/gmaps].

Authentication

Most operations on Google Maps require that you tell Google who you are. To authenticate with Google Maps, follow the instructions [https://console.developers.google.com/flows/enableapi?apiid=maps_backend,geocoding_backend,directions_backend,distance_matrix_backend,elevation_backend&keyType=CLIENT_SIDE&reusekey=true] for creating an API key. You will probably want to create a new project, then click on the Credentials section and create a Browser key. The API key is a string that starts with the letters AI.

[image: _images/api_key.png]
You can pass this key to gmaps with the configure method:

gmaps.configure(api_key="AI...")

Maps and layers created after the call to gmaps.configure will have access to the API key.

You should avoid hard-coding the API key into your Jupyter notebooks. You can use environment variables [https://en.wikipedia.org/wiki/Environment_variable]. Add the following line to your shell start-up file (probably ~/.profile or ~/.bashrc):

export GOOGLE_API_KEY=AI...

Make sure you don’t put spaces around the = sign. If you then open a new terminal window and type env at the command prompt, you should see that your API key. Start a new Jupyter notebook server in a new terminal, and type:

import os
import gmaps

gmaps.configure(api_key=os.environ["GOOGLE_API_KEY"])

Getting started

gmaps is a plugin for Jupyter for embedding Google Maps in your notebooks. It is designed as a data visualization tool.

To demonstrate gmaps, let’s plot the earthquake dataset, included in the package:

import gmaps
import gmaps.datasets

gmaps.configure(api_key="AI...") # Fill in with your API key

earthquake_df = gmaps.datasets.load_dataset_as_df("earthquakes")
earthquake_df.head()

The earthquake data has three columns: a latitude and longitude indicating the earthquake’s epicentre and a weight denoting the magnitude of the earthquake at that point. Let’s plot the earthquakes on a Google map:

locations = earthquake_df[["latitude", "longitude"]]
weights = earthquake_df["magnitude"]
fig = gmaps.figure()
fig.add_layer(gmaps.heatmap_layer(locations, weights=weights))
fig

[image: _images/tutorial-earthquakes.png]
This gives you a fully-fledged Google map. You can zoom in and out, switch to satellite view and even to street view if you really want. The heatmap adjusts as you zoom in and out.

Basic concepts

gmaps is built around the idea of adding layers to a base map. After you’ve authenticated with Google maps, you start by creating a figure, which contains a base map:

import gmaps
gmaps.configure(api_key="AI...")

fig = gmaps.figure()
fig

[image: _images/plainmap2.png]
You then add layers on top of the base map. For instance, to add a heatmap layer:

import gmaps
gmaps.configure(api_key="AI...")

fig = gmaps.figure()

generate some (latitude, longitude) pairs
locations = [(51.5, 0.1), (51.7, 0.2), (51.4, -0.2), (51.49, 0.1)]

heatmap_layer = gmaps.heatmap_layer(locations)
fig.add_layer(heatmap_layer)
fig

[image: _images/plainmap3.png]
The locations array can either be a list of tuples, as in the example above, a numpy array of shape $N times 2$ or a dataframe with two columns.

Most attributes on the base map and the layers can be set through named arguments in the constructor or as instance attributes once the instance is created. These two constructions are thus equivalent:

heatmap_layer = gmaps.heatmap_layer(locations)
heatmap_layer.point_radius = 8

and:

heatmap_layer = gmaps.heatmap_layer(locations, point_radius=8)

The former construction is useful for modifying a map once it has been built. Any change in parameters will propagate to maps in which those layers are included.

Base maps

Your first action with gmaps will usually be to build a base map:

import gmaps
gmaps.configure(api_key="AI...")

gmaps.figure()

This builds an empty map. You can also set the zoom level and map center
explicitly:

new_york_coordinates = (40.75, -74.00)
gmaps.figure(center=new_york_coordinates, zoom_level=12)

[image: _images/base_map_example.png]
If you do not set the map zoom and center, the viewport will automatically
focus on the data as you add it to the map.

Heatmaps

Heatmaps are a good way of getting a sense of the density and clusters of geographical events. They are a powerful tool for making sense of larger datasets. We will use a dataset recording all instances of political violence that occurred in Africa between 1997 and 2015. The dataset comes from the Armed Conflict Location and Event Data Project [http://www.acleddata.com]. This dataset contains about 110,000 rows.

import gmaps.datasets

locations = gmaps.datasets.load_dataset_as_df("acled_africa")

locations.head()
=> dataframe with 'longitude' and 'latitude' columns

We already know how to build a heatmap layer:

import gmaps
import gmaps.datasets
gmaps.configure(api_key="AI...")

locations = gmaps.datasets.load_dataset_as_df("acled_africa")
fig = gmaps.figure()
heatmap_layer = gmaps.heatmap_layer(locations)
fig.add_layer(heatmap_layer)
fig

[image: _images/acled_africa_heatmap_basic.png]

Preventing dissipation on zoom

If you zoom in sufficiently, you will notice that individual points disappear. You can prevent this from happening by controlling the max_intensity setting. This caps off the maximum peak intensity. It is useful if your data is strongly peaked. This settings is None by default, which implies no capping. Typically, when setting the maximum intensity, you also want to set the point_radius setting to a fairly low value. The only good way to find reasonable values for these settings is to tweak them until you have a map that you are happy with.:

heatmap_layer.max_intensity = 100
heatmap_layer.point_radius = 5

To avoid re-drawing the whole map every time you tweak these settings, you may want to set them in another noteobook cell:

[image: _images/acled_africa_heatmap.png]
Google maps also exposes a dissipating option, which is true by default. If this is true, the radius of influence of each point is tied to the zoom level: as you zoom out, a given point covers more physical kilometres. If you set it to false, the physical radius covered by each point stays fixed. Your points will therefore either be tiny at high zoom levels or large at low zoom levels.

Setting the color gradient and opacity

You can set the color gradient of the map by passing in a list of colors. Google maps will interpolate linearly between those colors. You can represent a color as a string denoting the color (the colors allowed by this [http://www.w3.org/TR/css3-color/#html4]):

heatmap_layer.gradient = [
 'white',
 'silver',
 'gray'
]

If you need more flexibility, you can represent colours as an RGB triple or an RGBA quadruple:

heatmap_layer.gradient = [
 (200, 200, 200, 0.6),
 (100, 100, 100, 0.3),
 (50, 50, 50, 0.3)
]

[image: _images/acled_africa_heatmap_gradient.png]
You can also use the opacity option to set a single opacity across the entire colour gradient:

heatmap_layer.opacity = 0.0 # make the heatmap transparent

Weighted heatmaps

By default, heatmaps assume that every row is of equal importance. You can override this by passing weights through the weights keyword argument. The weights array is an iterable (e.g. a Python list or a Numpy array) or a single pandas series. Weights must all be positive (this is a limitation in Google maps itself).

import gmaps
import gmaps.datasets
gmaps.configure(api_key="AI...")

df = gmaps.datasets.load_dataset_as_df("earthquakes")
dataframe with columns ('latitude', 'longitude', 'magnitude')

fig = gmaps.figure()
heatmap_layer = gmaps.heatmap_layer(
 df[["latitude", "longitude"]], weights=df["magnitude"],
 max_intensity=30, point_radius=3.0
)
fig.add_layer(heatmap_layer)
fig

[image: _images/weighted-heatmap-example.png]

Markers and symbols

We can add a layer of markers to a Google map. Each marker represents an individual data point:

import gmaps
gmaps.configure(api_key="AI...")

marker_locations = [
 (-34.0, -59.166672),
 (-32.23333, -64.433327),
 (40.166672, 44.133331),
 (51.216671, 5.0833302),
 (51.333328, 4.25)
]

fig = gmaps.figure()
markers = gmaps.marker_layer(marker_locations)
fig.add_layer(markers)
fig

[image: _images/marker-example.png]
We can also attach a pop-up box to each marker. Clicking on the marker will bring up the info box. The content of the box can be either plain text or html:

import gmaps
gmaps.configure(api_key="AI...")

nuclear_power_plants = [
 {"name": "Atucha", "location": (-34.0, -59.167), "active_reactors": 1},
 {"name": "Embalse", "location": (-32.2333, -64.4333), "active_reactors": 1},
 {"name": "Armenia", "location": (40.167, 44.133), "active_reactors": 1},
 {"name": "Br", "location": (51.217, 5.083), "active_reactors": 1},
 {"name": "Doel", "location": (51.333, 4.25), "active_reactors": 4},
 {"name": "Tihange", "location": (50.517, 5.283), "active_reactors": 3}
]

plant_locations = [plant["location"] for plant in nuclear_power_plants]
info_box_template = """
<dl>
<dt>Name</dt><dd>{name}</dd>
<dt>Number reactors</dt><dd>{active_reactors}</dd>
</dl>
"""
plant_info = [info_box_template.format(**plant) for plant in nuclear_power_plants]

marker_layer = gmaps.marker_layer(plant_locations, info_box_content=plant_info)
fig = gmaps.figure()
fig.add_layer(marker_layer)
fig

[image: _images/marker-info-box-example.png]
Markers are currently limited to the Google maps style drop icon. If you need to draw more complex shape on maps, use the symbol_layer function. Symbols represent each latitude, longitude pair with a circle whose colour and size you can customize. Let’s, for instance, plot the location of every Starbuck’s coffee shop in the UK:

import gmaps
import gmaps.datasets

gmaps.configure(api_key="AI...")

df = gmaps.datasets.load_dataset_as_df("starbucks_kfc_uk")

starbucks_df = df[df["chain_name"] == "starbucks"]
starbucks_df = starbucks_df[['latitude', 'longitude']]

starbucks_layer = gmaps.symbol_layer(
 starbucks_df, fill_color="green", stroke_color="green", scale=2
)
fig = gmaps.figure()
fig.add_layer(starbucks_layer)
fig

[image: _images/starbucks-symbols.png]
You can have several layers of markers. For instance, we can compare the locations of Starbucks coffee shops and KFC outlets in the UK by plotting both on the same map:

import gmaps
import gmaps.datasets

gmaps.configure(api_key="AI...")

df = gmaps.datasets.load_dataset_as_df("starbucks_kfc_uk")

starbucks_df = df[df["chain_name"] == "starbucks"]
starbucks_df = starbucks_df[['latitude', 'longitude']]

kfc_df = df[df["chain_name"] == "kfc"]
kfc_df = kfc_df[['latitude', 'longitude']]

starbucks_layer = gmaps.symbol_layer(
 starbucks_df, fill_color="rgba(0, 150, 0, 0.4)",
 stroke_color="rgba(0, 150, 0, 0.4)", scale=2
)

kfc_layer = gmaps.symbol_layer(
 kfc_df, fill_color="rgba(200, 0, 0, 0.4)",
 stroke_color="rgba(200, 0, 0, 0.4)", scale=2
)

fig = gmaps.figure()
fig.add_layer(starbucks_layer)
fig.add_layer(kfc_layer)
fig

[image: _images/starbucks-kfc-example.png]

Dataset size limitations

Google maps may become very slow if you try to represent more than a few thousand symbols or markers. If you have a larger dataset, you should either consider subsampling or use heatmaps.

GeoJSON layer

We can add GeoJSON to a map. This is very useful when we want to draw chloropleth maps [https://en.wikipedia.org/wiki/Choropleth_map].

You can either load data from your own GeoJSON file, or you can load one of the GeoJSON geometries bundled with gmaps. Let’s start with the latter. We will create a map of the GINI coefficient [https://en.wikipedia.org/wiki/Gini_coefficient] (a measure of inequality) for every country in the world.

Let’s start by just plotting the raw GeoJSON:

import gmaps
import gmaps.geojson_geometries
gmaps.configure(api_key="AIza...")

countries_geojson = gmaps.geojson_geometries.load_geometry('countries')

fig = gmaps.figure()

gini_layer = gmaps.geojson_layer(countries_geojson)
fig.add_layer(gini_layer)
fig

This just plots the country boundaries on top of a Google map.

[image: _images/geojson-1.png]
Next, we want to colour each country by a colour derived from its GINI index. We first need to map from each item in the GeoJSON document to a GINI value. GeoJSON documents are organised as a collection of features, each of which has the keys geometry and properties. For instance, for our countries:

>>> print(len(geojson['features']))
217 # corresponds to 217 distinct countries and territories
>>> print(geojson['features'][0])
{
 'type': 'Feature'
 'geometry': {'coordinates': [...], 'type': 'Polygon'},
 'properties': {'ISO_A3': u'AFG', 'name': u'Afghanistan'}
}

As we can see, properties encodes meta-information about the feature, like the country name. We will use this name to look up a GINI value for that country and translate that into a colour. We can download a list of GINI coefficients for (nearly) every country using the gmaps.datasets module (you could load your own data here):

import gmaps.datasets
rows = gmaps.datasets.load_dataset('gini') # 'rows' is a list of tuples
country2gini = dict(rows) # dictionary mapping 'country' -> gini coefficient
print(country2gini['United Kingdom'])
32.4

We can now use the country2gini dictionary to map each country to a color. We will use a Matplotlib colormap [http://matplotlib.org/api/cm_api.html] to map from our GINI floats to a color that makes sense on a linear scale. We will use the Viridis [http://matplotlib.org/examples/color/colormaps_reference.html] colorscale:

from matplotlib.cm import viridis
from matplotlib.colors import to_hex

We will need to scale the GINI values to lie between 0 and 1
min_gini = min(country2gini.values())
max_gini = max(country2gini.values())
gini_range = max_gini - min_gini

def calculate_color(gini):
 """
 Convert the GINI coefficient to a color
 """
 # make gini a number between 0 and 1
 normalized_gini = (gini - min_gini) / gini_range

 # invert gini so that high inequality gives dark color
 inverse_gini = 1.0 - normalized_gini

 # transform the gini coefficient to a matplotlib color
 mpl_color = viridis(inverse_gini)

 # transform from a matplotlib color to a valid CSS color
 gmaps_color = to_hex(mpl_color, keep_alpha=False)

 return gmaps_color

We now need to build an array of colors, one for each country, that we can pass to the GeoJSON layer. The easiest way to do this is to iterate over the array of features in the GeoJSON:

colors = []
for feature in countries_geojson['features']:
 country_name = feature['properties']['name']
 try:
 gini = country2gini[country_name]
 color = calculate_color(gini)
 except KeyError:
 # no GINI for that country: return default color
 color = (0, 0, 0, 0.3)
 colors.append(color)

We can now pass our array of colors to the GeoJSON layer:

fig = gmaps.figure()
gini_layer = gmaps.geojson_layer(
 countries_geojson,
 fill_color=colors,
 stroke_color=colors,
 fill_opacity=0.8)
fig.add_layer(gini_layer)
fig

[image: _images/geojson-2.png]

GeoJSON geometries bundled with Gmaps

Finding appropriate GeoJSON geometries can be painful. To mitigate this somewhat, gmaps comes with its own set of curated GeoJSON geometries:

>>> import gmaps.geojson_geometries
>>> gmaps.geojson_geometries.list_geometries()
['brazil-states',
'england-counties',
'us-states',
'countries',
'india-states',
'us-counties',
'countries-high-resolution']

>>> gmaps.geojson_geometries.geometry_metadata('brazil-states')
{'description': 'US county boundaries',
 'source': 'http://eric.clst.org/Stuff/USGeoJSON'}

Use the load_geometry function to get the GeoJSON object:

import gmaps
import gmaps.geojson_geometries
gmaps.configure(api_key="AIza...")

countries_geojson = gmaps.geojson_geometries.load_geometry('brazil-states')

fig = gmaps.figure()

geojson_layer = gmaps.geojson_layer(countries_geojson)
fig.add_layer(geojson_layer)
fig

New geometries would greatly enhance the usability of jupyter-gmaps. Refer to this issue [https://github.com/pbugnion/gmaps/issues/112] on GitHub for information on how to contribute a geometry.

Loading your own GeoJSON

So far, we have only considered visualizing GeoJSON geometries that come with jupyter-gmaps. Most of the time, though, you will want to load your own geometry. Use the standard library json [https://docs.python.org/3.5/library/json.html] module for this:

import json
import gmaps
gmaps.configure(api_key="AIza...")

with open("my_geojson_geometry.json") as f:
 geometry = json.load(f)

fig = gmaps.figure()
geojson_layer = gmaps.geojson_layer(geometry)
fig.add_layer(geojson_layer)
fig

Drawing markers, lines and polygons

The drawing layer lets you draw complex shapes on the map. You can add markers,
lines and polygons directly to maps. Let’s, for instance, draw the Greenwich
meridian [https://en.wikipedia.org/wiki/Greenwich_Mean_Time] and add
a marker on Greenwich itself:

import gmaps
gmaps.configure(api_key="AIza...")

fig = gmaps.figure(center=(51.5, 0.1), zoom_level=9)

Features to draw on the map
gmt_meridian = gmaps.Line(start=(52.0, 0.0), end=(50.0, 0.0))
greenwich = gmaps.Marker((51.3, 0.0), info_box_content="Greenwich")

drawing = gmaps.drawing_layer(features=[greenwich, gmt_meridian])
fig.add_layer(drawing)
fig

[image: _images/drawing_example1.png]
Adding the drawing layer to a map displays drawing controls that lets users add
arbitrary shapes to the map. This is useful if you want to react to user events
(for instance, if you want to run some Python code every time the user adds a
marker). This is discussed in the Reacting to user actions on the map section.

To hide the drawing controls, pass show_controls=False as argument to the
drawing layer:

drawing = gmaps.drawing_layer(
 features=[greenwich, gmt_meridian],
 show_controls=False
)

Besides lines and markers, you can also draw polygons on the map. This is useful
for drawing complex shapes. For instance, we can draw the London congestion
charge zone [https://en.wikipedia.org/wiki/London_congestion_charge].
jupyter-gmaps has a built-in dataset with the coordinates of this zone:

import gmaps
import gmaps.datasets

london_congestion_zone_path = gmaps.datasets.load_dataset('london_congestion_zone')
london_congestion_zone_path[:2]
[(51.530318, -0.123026), (51.530078, -0.123614)]

We can draw this on the map with a gmaps.Polygon:

fig = gmaps.figure(center=(51.5, -0.1), zoom_level=12)
drawing = gmaps.drawing_layer(
 features=[gmaps.Polygon(london_congestion_zone_path)],
 show_controls=False
)
fig.add_layer(drawing)
fig

[image: _images/drawing_example2.png]
We can pass an arbitrary list of (latitude, longitude) pairs to
gmaps.Polygon to specify complex shapes.

See the API documentation for gmaps.drawing_layer() for an exhaustive list
of options for the drawing layer.

Directions layer

gmaps supports drawing routes based on the Google maps directions service [https://developers.google.com/maps/documentation/javascript/examples/directions-simple]. At the moment, this only supports directions between points denoted by latitude and longitude:

import gmaps
import gmaps.datasets
gmaps.configure(api_key="AIza...")

Latitude-longitude pairs
geneva = (46.2, 6.1)
montreux = (46.4, 6.9)
zurich = (47.4, 8.5)

fig = gmaps.figure()
geneva2zurich = gmaps.directions_layer(geneva, zurich)
fig.add_layer(geneva2zurich)
fig

[image: _images/directions_layer_simple.png]
You can also pass waypoints and customise the directions request. You can pass up to 23 waypoints, and waypoints are not supported when the travel mode is 'TRANSIT' (this is a limitation of the Google Maps directions service):

fig = gmaps.figure()
geneva2zurich_via_montreux = gmaps.directions_layer(
 geneva, zurich, waypoints=[montreux],
 travel_mode='BICYCLING')
fig.add_layer(geneva2zurich_via_montreux)
fig

[image: _images/directions_layer_waypoints.png]
The full list of options is given as part of the documentation for the
gmaps.directions_layer().

Bicycling, transit and traffic layers

You can add bicycling, transit and traffic information to a base map. For
instance, use gmaps.bicycling_layer() to draw cycle lanes. This will
also change the style of the base layer to de-emphasize streets which are not
cycle-friendly.

import gmaps
gmaps.configure(api_key="AI...")

Map centered on London
fig = gmaps.figure(center=(51.5, -0.2), zoom_level=11)
fig.add_layer(gmaps.bicycling_layer())
fig

[image: _images/bicycling-layer.png]
Similarly, the transit layer, available as gmaps.transit_layer(),
adds information about public transport, where available.

[image: _images/transit-layer.png]
The traffic layer, available as gmaps.traffic_layer(), adds information
about the current state of traffic.

[image: _images/traffic-layer.png]
Unlike the other layers, these layers do not take any user data. Thus,
jupyter-gmaps will not use them to center the map. This means that,
if you use these layers by themselves, you will often want to center the
figure explicitly, using the center and zoom_level attributes.

Building applications with jupyter-gmaps

	You can use jupyter-gmaps as a component in a Jupyter widgets [https://ipywidgets.readthedocs.io/en/stable/] application. Jupyter widgets let you embed rich user interfaces in Jupyter notebooks. For instance:

	
	you can use maps as a way to get user input. The drawing layer lets users draw markers, lines or polygons on the map. We can specify arbitrary Python code that runs whenever a shape is added to the map. As an example, we will build an application where, whenever the user places a marker, we retrieve the address of the marker and write it in a text widget.

	you can use maps as a way to display the result of an external computation. For instance, if you have timestamped geographical data (for instance, you have the date and coordinates of a series of events), you can combine a heatmap with a slider to see how events unfold over time.

Reacting to user actions on the map

The drawing layer lets us specify Python code to be executed whenever the user
adds a feature (like a marker, a line or a polygon) to the map. To demonstrate
this, we will build a small application for reverse geocoding: when the user
places a marker on the map, we will find the address closest to that marker and
write it in a text widget [https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20List.html#Text].
We will use geopy [https://pypi.python.org/pypi/geopy], a wrapper around
several geocoding APIs, to calculate the address from the marker’s coordinates.

This is the entire code listing:

from tabulate import tabulate
import ipywidgets as widgets
import geopy
import gmaps

API_KEY = 'AIz...'

gmaps.configure(api_key=API_KEY)

class ReverseGeocoder(object):
 """
 Jupyter widget for finding addresses.

 The user places markers on a map. For each marker,
 we use `geopy` to find the nearest address to that
 marker, and write that address in a text box.
 """

 def __init__(self):
 self._figure = gmaps.figure()
 self._drawing = gmaps.drawing_layer()
 self._drawing.on_new_feature(self._new_feature_callback)
 self._figure.add_layer(self._drawing)
 self._address_box = widgets.Text(
 description='Address: ',
 disabled=True,
 layout={'width': '95%', 'margin': '10px 0 0 0'}
)
 self._geocoder = geopy.geocoders.GoogleV3(api_key=API_KEY)
 self._container = widgets.VBox([self._figure, self._address_box])

 def _get_location_details(self, location):
 return self._geocoder.reverse(location, exactly_one=True)

 def _clear_address_box(self):
 self._address_box.value = ''

 def _show_address(self, location):
 location_details = self._get_location_details(location)
 if location_details is None:
 self._address_box.value = 'No address found'
 else:
 self._address_box.value = location_details.address

 def _new_feature_callback(self, feature):
 try:
 location = feature.location
 except AttributeError:
 return # Not a marker

 # Clear address box to signify to the user that something is happening
 self._clear_address_box()

 # Remove all markers other than the one that has just been added.
 self._drawing.features = [feature]

 # Compute the address and display it
 self._show_address(location)

 def render(self):
 return self._container

ReverseGeocoder().render()

There are several things to note on this:

	We wrap the application in a ReverseGeocoder class. Wrapping your
application in a class (rather than using the notebook’s global namespace)
helps with encapsulation and lets you instantiate this widget multiple times.
Since the flow through widget applications is often more complex than linear
data analysis workflows, encapsulation will improve your ability to reason
about the code.

	As part of the class constructor, we use gmaps.figure() to create a
figure. We add use gmaps.drawing_layer() to create a drawing layer,
which we add to the figure. We also create a widgets.Text widget. This is
a text box in which we will write the address. We then wrap our figure and the
text box in a single widgets.VBox, a widget container that stacks widgets
vertically.

	We register a callback on the drawing layer using .on_new_feature. The
function that we pass in to .on_new_feature will get called whenever the
user adds a feature to the map. This is the hook that lets us build complex
applications on top of the drawing layer: we can run arbitrary Python code
when the user adds a marker to the map.

	In the .on_new_feature callback, we first check whether the feature that
has been added is a marker (the user could, in principle, have added another
feature type, like a line, to the map).

	Assuming the feature is a valid marker, we first clear the text widget
containing the address. This gives feedback to the user that something is
happening.

	We then re-write the .features array of the drawing layer, keeping just
the marker that the user has just added. This clears previous markers,
avoiding clutter on the map.

	We then use geopy [https://pypi.python.org/pypi/geopy] to find the
adddress. Assuming the address is valid, display it in the text widget.

Exporting maps

Exporting to PNG

You can save maps to PNG by clicking the Download button in the toolbar.
This will download a static copy of the map.

This feature suffers from some know issues:

	there is no way to set the quality of the rendering at present,

	you cannot export maps that contain a Directions layer (see the issue [https://github.com/pbugnion/gmaps/issues/144] on Github for details).

Exporting to HTML

You can export maps to HTML using the infrastructure provided by
ipywidgets. For instance, let’s export a simple map to HTML:

from ipywidgets.embed import embed_minimal_html
import gmaps

gmaps.configure(api_key="AI...")

fig = gmaps.figure()
embed_minimal_html('export.html', views=[fig])

This generates a file, export.html, with two (or more) <script> tags
that contain the widget state. The scripts with tag <script
type="application/vnd.jupyter.widget-view+json"> indicate where the
widgets will be placed in the DOM. You can move these around and nest them
in other DOM elements to change where the exported maps appear in the DOM.

Open export.html with a webserver, e.g. by running, if you use Python 3:

python -m http.server 8080

Or, if you use Python 2:

python -m SimpleHTTPServer 8080

Navigate to http://0.0.0.0:8080/export.html and you should see the export!

[image: _images/export-example.png]
The module ipywidgets.embed contains other functions for exporting that
will give you greater control over what is exported. See the documentation [https://ipywidgets.readthedocs.io/en/latest/embedding.html#python-interface]
and the source code [https://github.com/jupyter-widgets/ipywidgets/blob/master/ipywidgets/embed.py]
for more details.

API documentation

Figures and layers

	
gmaps.figure(display_toolbar=True, display_errors=True, zoom_level=None, center=None)

	Create a gmaps figure

This returns a Figure object to which you can add data layers.

	Parameters:	
	display_toolbar (boolean, optional) – Boolean denoting whether to show the toolbar. Defaults to True.

	display_errors (boolean, optional) – Boolean denoting whether to show errors that arise in the client.
Defaults to True.

	zoom_level (int, optional) – Integer between 0 and 21 indicating the initial zoom level.
High values are more zoomed in.
By default, the zoom level is chosen to fit the data passed to the
map. If specified, you must also specify the map center.

	center (tuple, optional) – Latitude-longitude pair determining the map center.
By default, the map center is chosen to fit the data passed to the
map. If specified, you must also specify the zoom level.

	Returns:	A gmaps.Figure widget.

	Examples:	

>>> import gmaps
>>> gmaps.configure(api_key="AI...")
>>> fig = gmaps.figure()
>>> locations = [(46.1, 5.2), (46.2, 5.3), (46.3, 5.4)]
>>> fig.add_layer(gmaps.heatmap_layer(locations))

You can also explicitly specify the intiial map center and zoom:

>>> fig = gmaps.figure(center=(46.0, -5.0), zoom_level=8)

	
gmaps.heatmap_layer(locations, weights=None, max_intensity=None, dissipating=True, point_radius=None, opacity=0.6, gradient=None)

	Create a heatmap layer.

This returns a gmaps.Heatmap or a gmaps.WeightedHeatmap
object that can be added to a gmaps.Figure to draw a
heatmap. A heatmap shows the density of points in or near
a particular area.

To set the parameters, pass them to the constructor or set
them on the Heatmap object after construction:

>>> heatmap = gmaps.heatmap_layer(locations, max_intensity=10)

or:

>>> heatmap = gmaps.heatmap_layer(locations)
>>> heatmap.max_intensity = 10

	Examples:	

>>> fig = gmaps.figure()
>>> locations = [(46.1, 5.2), (46.2, 5.3), (46.3, 5.4)]
>>> heatmap = gmaps.heatmap_layer(locations)
>>> heatmap.max_intensity = 2
>>> heatmap.point_radius = 3
>>> heatmap.gradient = ['white', 'gray']
>>> fig.add_layer(heatmap)

	Parameters:	
	locations (iterable of latitude, longitude pairs) – Iterable of (latitude, longitude) pairs denoting a single point.
Latitudes are expressed as a float between -90 (corresponding to 90
degrees south) and +90 (corresponding to 90 degrees north). Longitudes
are expressed as a float between -180 (corresponding to 180 degrees
west) and +180 (corresponding to 180 degrees east). This can be passed
in as either a list of tuples, a two-dimensional numpy array or a
pandas dataframe with two columns, in which case the first one is taken
to be the latitude and the second one is taken to be the longitude.

	weights (iterable of floats, optional) – Iterable of weights of the same length as locations.
All the weights must be positive.

	max_intensity (float, optional) – Strictly positive floating point number indicating the numeric value
that corresponds to the hottest colour in the heatmap gradient. Any
density of points greater than that value will just get mapped to
the hottest colour. Setting this value can be useful when your data
is sharply peaked. It is also useful if you find that your heatmap
disappears as you zoom in.

	point_radius (int, optional) – Number of pixels for each point passed in the data. This determines the
“radius of influence” of each data point.

	dissipating (bool, optional) – Whether the radius of influence of each point changes as you zoom in
or out. If dissipating is True, the radius of influence of each
point increases as you zoom out and decreases as you zoom in. If
False, the radius of influence remains the same. Defaults to True.

	opacity (float, optional) – The opacity of the heatmap layer. Defaults to 0.6.

	gradient (list of colors, optional) – The color gradient for the heatmap. This must be specified as a list
of colors. Google Maps then interpolates linearly between those
colors.
Colors can be specified as a simple string, e.g. ‘blue’,
as an RGB tuple, e.g. (100, 0, 0), or as an RGBA tuple, e.g.
(100, 0, 0, 0.5).

	Returns:	A gmaps.Heatmap or a gmaps.WeightedHeatmap widget.

	
gmaps.symbol_layer(locations, hover_text='', fill_color=None, fill_opacity=1.0, stroke_color=None, stroke_opacity=1.0, scale=3, info_box_content=None, display_info_box=None)

	Symbol layer

Add this layer to a gmaps.Figure instance to draw
symbols on the map. A symbol will be drawn on the map for
each point in the locations argument.

	Examples:	

>>> fig = gmaps.figure()
>>> locations = [
 (-34.0, -59.166672),
 (-32.23333, -64.433327),
 (40.166672, 44.133331),
 (51.216671, 5.0833302),
 (51.333328, 4.25)
]
>>> symbols = gmaps.symbol_layer(
 locations, fill_color="red", stroke_color="red")
>>> fig.add_layer(symbols)

You can set a list of information boxes, which will be displayed when the
user clicks on a marker.

>>> list_of_infoboxes = [
 "Simple string info box",
 "HTML content"
]
>>> symbol_layer = gmaps.symbol_layer(
 locations, info_box_content=list_of_infoboxes)

You can also set text that appears when someone’s mouse hovers
over a point:

>>> names = ["Atucha", "Embalse", "Armenia", "BR", "Doel"]
>>> symbol_layer = gmaps.symbol_layer(locations, hover_text=names)

Apart from locations, which must be an iterable of
(latitude, longitude) pairs, the arguments can be given as
either a list of the same length as locations, or a
single value. If given as a single value, this value will
be broadcast to every marker. Thus, these two calls are equivalent:

>>> symbols = gmaps.symbol_layer(
 locations, fill_color=["red"]*len(locations))
>>> symbols = gmaps.symbol_layer(
 locations, fill_color="red")

The former is useful for passing different colours to
different symbols.

>>> colors = ["red", "green", "blue", "black", "white"]
>>> symbols = gmaps.symbol_layer(
 locations, fill_color=colors, stroke_color=colors)

	Parameters:	
	locations (list of tuples) – List of (latitude, longitude) pairs
denoting a single point. Latitudes are expressed as
a float between -90 (corresponding to 90 degrees south)
and +90 (corresponding to 90 degrees north). Longitudes
are expressed as a float between -180 (corresponding to 180
degrees west) and +180 (corresponding to 180 degrees east).

	hover_text (string or list of strings, optional) – Text to be displayed when a user’s mouse is hovering over
a marker. This can be either a single string, in which case
it will be applied to every marker, or a list of strings,
in which case it must be of the same length as locations.
If this is set to an empty string, nothing will appear when
the user’s mouse hovers over a symbol.

	fill_color (single color or list of colors, optional) – The fill color of the symbol. This can be specified as a
single color, in which case the same color will apply to every symbol,
or as a list of colors, in which case it must be the
same length as locations.
Colors can be specified as a simple string, e.g. ‘blue’,
as an RGB tuple, e.g. (100, 0, 0), or as an RGBA tuple, e.g.
(100, 0, 0, 0.5).

	fill_opacity (float or list of floats, optional) – The opacity of the fill color. The opacity should be a float
between 0.0 (transparent) and 1.0 (opaque), or a list of floats.
1.0 by default.

	stroke_color (single color or list of colors, optional) – The stroke color of the symbol. This can be specified as a
single color, in which case the same color will apply to every symbol,
or as a list of colors, in which case it must be the
same length as locations.
Colors can be specified as a simple string, e.g. ‘blue’,
as an RGB tuple, e.g. (100, 0, 0), or as an RGBA tuple, e.g.
(100, 0, 0, 0.5).

	stroke_opacity (float or list of floats, optional) – The opacity of the stroke color. The opacity should be a float
between 0.0 (transparent) and 1.0 (opaque), or a list of floats.
1.0 by default.

	scale (integer or list of integers, optional) – How large the marker is. This can either be a single integer,
in which case the same scale will be applied to every marker,
or it must be an iterable of the same length as locations.
The scale must be greater than 1. This defaults to 3.

	info_box_content (string or list of strings, optional) – Content to be displayed when user clicks on a marker. This should
either be a single string, in which case the same content will apply to
every marker, or a list of strings of the same length of the
locations list.

	display_info_box (boolean or list of booleans, optional) – Whether to display an info box when the user clicks on a symbol.
This should either be a single boolean value, in which case it
will be applied to every symbol, or a list of boolean values of the
same length as the locations list.
The default value is True for any symbols for which info_box_content
is set, and False otherwise.

	
gmaps.marker_layer(locations, hover_text='', label='', info_box_content=None, display_info_box=None)

	Marker layer

Add this layer to a gmaps.Figure instance to draw
markers corresponding to specific locations on the map.
A marker will be drawn on the map for each point in the
locations argument.

	Examples:	

>>> fig = gmaps.figure()
>>> locations = [
 (-34.0, -59.166672),
 (-32.23333, -64.433327),
 (40.166672, 44.133331),
 (51.216671, 5.0833302),
 (51.333328, 4.25)
]
>>> markers = gmaps.marker_layer(locations)
>>> fig.add_layer(markers)

	Parameters:	
	locations (list of tuples) – List of (latitude, longitude) pairs
denoting a single point. Latitudes are expressed as
a float between -90 (corresponding to 90 degrees south)
and +90 (corresponding to 90 degrees north). Longitudes
are expressed as a float between -180 (corresponding to 180
degrees west) and +180 (corresponding to 180 degrees east).

	hover_text (string or list of strings, optional) – Text to be displayed when a user’s mouse is hovering over
a marker. This can be either a single string, in which case
it will be applied to every marker, or a list of strings,
in which case it must be of the same length as locations.
If this is set to an empty string, nothing will appear when
the user’s mouse hovers over a marker.

	label (string or list of strings, optional) – Text to be displayed inside the marker. Google maps
only displays the first letter of whatever string is
passed to the marker.
This can be either a single string, in which case
every marker will receive the same label, or a list of
strings, in which case it must be of the same length
as locations.

	info_box_content (string or list of strings, optional) – Content to be displayed when user clicks on a marker. This should
either be a single string, in which case the same content will apply to
every marker, or a list of strings of the same length of the
locations list.

	display_info_box (boolean or list of booleans, optional) – Whether to display an info box when the user clicks on a marker.
This should either be a single boolean value, in which case it
will be applied to every marker, or a list of boolean values of the
same length as the locations list.
The default value is True for any markers for which info_box_content
is set, and False otherwise.

	
gmaps.geojson_layer(geojson, fill_color=None, fill_opacity=0.4, stroke_color=None, stroke_opacity=0.8, stroke_weight=1.0)

	GeoJSON layer

Add this layer to a gmaps.Figure instance to render GeoJSON.

	Examples:	

Let’s start by fetching some GeoJSON. We could have loaded it from file,
but let’s load it from a URL instead. You will need requests.

>>> import json
>>> import requests
>>> countries_string = requests.get(
 "https://raw.githubusercontent.com/johan/world.geo.json/master/countries.geo.json"
).content
>>> countries = json.loads(countries_string)

>>> import gmaps
>>> gmaps.configure(api_key="AI...")
>>> fig = gmaps.figure()
>>> geojson = gmaps.geojson_layer(countries)
>>> fig.add_layer(geojson)
>>> fig

We can pass style options into the layer. Let’s assign a random
color to each country:

>>> import random
>>> colors = [
 random.choice(['red', 'green', 'blue', 'purple', 'yellow', 'teal'])
 for country in countries['features']
]
>>> geojson = gmaps.geojson_layer(countries, fill_color=colors)

Finally, let’s also make our colors more transparent and decrease
the stroke weight.

>>> geojson = gmaps.geojson_layer(
 countries, fill_color=colors, fill_opacity=0.2, stroke_weight=1)

	Parameters:	
	geojson (dict) – A Python dictionary containing a GeoJSON feature collection. If you
have a GeoJSON file, you will need to load it using
json.load [https://docs.python.org/3.6/library/json.html].

	fill_color (single color or list of colors, optional) – The fill color of the symbol. This can be specified as a
single color, in which case the same color will apply to every symbol,
or as a list of colors, in which case it must be the
same length as locations.
Colors can be specified as a simple string, e.g. ‘blue’,
as an RGB tuple, e.g. (100, 0, 0), or as an RGBA tuple, e.g.
(100, 0, 0, 0.5).

	fill_opacity (float or list of floats, optional) – The opacity of the fill color. The opacity should be a float
between 0.0 (transparent) and 1.0 (opaque), or a list of floats.
0.4 by default.

	stroke_color (single color or list of colors, optional) – The stroke color of the symbol. This can be specified as a
single color, in which case the same color will apply to every symbol,
or as a list of colors, in which case it must be the
same length as locations.
Colors can be specified as a simple string, e.g. ‘blue’,
as an RGB tuple, e.g. (100, 0, 0), or as an RGBA tuple, e.g.
(100, 0, 0, 0.5).

	stroke_opacity (float or list of floats, optional) – The opacity of the stroke color. The opacity should be a float
between 0.0 (transparent) and 1.0 (opaque), or a list of floats.
0.8 by default.

	stroke_weight (float or list of floats, optional) – The width, in pixels, of the stroke. Useful values range from 0.0
(corresponding to no stroke) to about 20, corresponding to a very
fat brush. 3.0 by default.

	
gmaps.drawing_layer(features=None, mode='MARKER', show_controls=True, marker_options=None)

	Create an interactive drawing layer

Adding a drawing layer to a map allows adding custom shapes,
both programatically and interactively (by drawing on the map).

	Examples:	

You can use the drawing layer to add lines, markers and
polygons to a map:

>>> fig = gmaps.figure()
>>> drawing = gmaps.drawing_layer(features=[
 gmaps.Line(end=(46.23, 5.86), start=(46.44, 5.24)),
 gmaps.Marker(location=(46.88, 5.45)),
 gmaps.Polygon([(46.72, 6.06), (46.48, 6.49), (46.79, 6.91)])
])
>>> fig.add_layer(drawing)
>>> fig

You can also use the drawing layer as a way to get user input.
The user can draw features on the map. You can then get the
list of features programatically.

>>> fig = gmaps.figure()
>>> drawing = gmaps.drawing_layer()
>>> fig.add_layer(drawing)
>>> fig
>>> # Now draw on the map
>>> drawing.features
[Marker(location=(46.83, 5.56)),
Marker(location=(46.46, 5.91)),
Line(end=(46.32, 5.98), start=(46.42, 5.12))]

You can bind callbacks that are executed when a new feature is added. For
instance, you can use geopy [http://geopy.readthedocs.io/en/latest/] to
get the address corresponding to markers that you add on the map:

API_KEY = "Aiz..."

import gmaps
import geopy

gmaps.configure(api_key=API_KEY)
fig = gmaps.figure()
drawing = gmaps.drawing_layer()

geocoder = geopy.geocoders.GoogleV3(api_key=API_KEY)

def print_address(feature):
 try:
 print(geocoder.reverse(feature.location, exactly_one=True))
 except AttributeError as e:
 # Not a marker
 pass

drawing.on_new_feature(print_feature)
fig.add_layer(drawing)
fig # display the figure

	Parameters:	
	features (list of features, optional) – List of features to draw on the map. Features must be one of
gmaps.Marker, gmaps.Line or gmaps.Polygon.

	marker_options (gmaps.MarkerOptions, dict or None, optional) – Options controlling how markers are drawn on the map.
Either pass in an instance of gmaps.MarkerOptions,
or a dictionary with keys hover_text, display_info_box,
info_box_content, label (or a subset of these). See
gmaps.MarkerOptions for documentation on possible
values.

	mode (str, optional) – Initial drawing mode. One of DISABLED, MARKER, LINE,
POLYGON or DELETE. Defaults to MARKER if show_controls
is True, otherwise defaults to DISABLED.

	show_controls (bool, optional) – Whether to show the drawing controls in the map toolbar.
Defaults to True.

	Returns:	A gmaps.Drawing widget.

	
gmaps.directions_layer(start, end, waypoints=None, avoid_ferries=False, travel_mode='DRIVING', avoid_highways=False, avoid_tolls=False, optimize_waypoints=False)

	Create a directions layer.

Add this layer to a gmaps.Figure instance to draw
directions on the map.

	Examples:	

>>> fig = gmaps.figure()
>>> start = (46.2, 6.1)
>>> end = (47.4, 8.5)
>>> directions = gmaps.directions_layer(start, end)
>>> fig.add_layer(directions)
>>> fig

You can also add waypoints on the route:

>>> waypoints = [(46.4, 6.9), (46.9, 8.0)]
>>> directions = gmaps.directions_layer(start, end, waypoints=waypoints)

You can choose the travel mode:

>>> directions = gmaps.directions_layer(start, end, travel_mode='WALKING')

	Parameters:	
	start (2-element tuple) – (Latitude, longitude) pair denoting the start of the journey.

	end (2-element tuple) – (Latitude, longitude) pair denoting the end of the journey.

	waypoints (List of 2-element tuples, optional) – Iterable of (latitude, longitude) pair denoting waypoints.
Google maps imposes a limitation on the total number of waypoints.
This limit is currently 23. You cannot use waypoints when the
travel_mode is 'TRANSIT'.

	travel_mode (str, optional) – Choose the mode of transport. One of 'BICYCLING', 'DRIVING',
'WALKING' or 'TRANSIT'. A travel mode of 'TRANSIT'
indicates public transportation. Defaults to 'DRIVING'.

	avoid_ferries (bool, optional) – Avoid ferries where possible.

	avoid_highways (bool, optional) – Avoid highways where possible.

	avoid_tolls (bool, optional) – Avoid toll roads where possible.

	optimize_waypoints (bool, optional) – If set to true, will attempt to re-order the supplied intermediate
waypoints to minimize overall cost of the route.

	
gmaps.bicycling_layer()

	Bicycling layer.

Adds cycle routes and decreases the weight of main routes
on the map.

	Returns:	A gmaps.Bicycling widget.

	Examples:	

>>> fig = gmaps.figure()
>>> fig.add_layer(gmaps.bicycling_layer())

	
gmaps.transit_layer()

	Transit layer.

Adds information about public transport lines to the
map. This only affects region for which Google has
public transport information [https://www.google.com/landing/transit/cities/index.html].

	Returns:	A gmaps.Transit widget.

	Examples:	

map centered on London
>>> fig = gmaps.figure(center=(51.5, -0.2), zoom_level=11)
>>> fig.add_layer(gmaps.transit_layer())
>>> fig

	
gmaps.traffic_layer(auto_refresh=True)

	Traffic layer.

Adds information about the current state of traffic
to the map. This layer only works at sufficiently high
zoom levels, and for regions for which Google Maps
has traffic information.

	Parameters:	auto_refresh (bool, optional) – Whether the traffic layer refreshes with updated
information automatically. This is true by default.

	Returns:	A gmaps.Traffic widget.

	Examples:	

map centered on London
>>> fig = gmaps.figure(center=(51.5, -0.2), zoom_level=11)
>>> fig.add_layer(gmaps.traffic_layer())
>>> fig

Utility functions

	
gmaps.configure(api_key=None)

	Configure access to the GoogleMaps API.

	Parameters:	api_key – String denoting the key to use when accessing Google maps,
or None to not pass an API key.

	
gmaps.locations.locations_to_list(locations)

	Convert from a generic iterable of locations to a list of tuples

Layer widgets only accepts lists of tuples, but we want the user
to be able to pass in any reasonable iterable. We therefore
need to convert the iterable passed in.

Low level widgets

	
class gmaps.Figure(**kwargs)

	Figure widget

This is the base widget for a Figure. Prefer instantiating
instances of Figure using the gmaps.figure()
factory method.

	
add_layer(layer)

	Add a data layer to this figure.

	Parameters:	layer – a gmaps layer.

	Examples:	

>>> f = figure()
>>> fig.add_layer(gmaps.heatmap_layer(locations))

See also

layer creation functions

	gmaps.heatmap_layer()

	Create a heatmap layer

	gmaps.symbol_layer()

	Create a layer of symbols

	gmaps.marker_layer()

	Create a layer of markers

	gmaps.geojson_layer()

	Create a GeoJSON layer

	gmaps.drawing_layer()

	Create a layer of custom features, and allow users to draw
on the map

	gmaps.directions_layer()

	Create a layer with directions

	gmaps.bicycling_layer()

	Create a layer showing cycle routes

	gmaps.transit_layer()

	Create a layer showing public transport

	gmaps.traffic_layer()

	Create a layer showing current traffic information

	
class gmaps.Map(**kwargs)

	Base map class

Instances of this act as a base map on which you can add
additional layers.

You should use the gmaps.figure() factory method
to instiate a figure, rather than building this class
directly.

	Parameters:	initial_viewport – Define the initial zoom level and map centre. You should
construct this using one of the static methods on
gmaps.InitialViewport. By default, the
map is centered on the data.

	Examples:	

>>> m = gmaps.figure()
>>> m.add_layer(gmaps.heatmap_layer(locations))

To explicitly set the initial map zoom and center:

>>> zoom_level = 8
>>> center = (20.0, -10.0)
>>> viewport = InitialViewport.from_zoom_center(zoom_level, center)
>>> m = gmaps.figure(initial_viewport=viewport)

	
class gmaps.InitialViewport(**metadata)

	Traitlet defining the initial viewport for a map.

	
static from_data_bounds()

	Create a viewport centered on the map’s data.

Most of the time, you should rely on the defaults provided by the
gmaps.figure() factory method, rather than creating a
viewport yourself.

	Examples:	

>>> m = gmaps.Map(initial_viewport=InitialViewport.from_data_bounds())

	
static from_zoom_center(zoom_level, center)

	Create a viewport by explicitly setting the zoom and center

Most of the time, you should rely on the defaults provided by the
gmaps.figure() factory method, rather than creating a
viewport yourself.

	Parameters:	
	zoom_level (int) – The zoom level for the map. A value between 0 (zoomed out) and
21 (zoomed in). Note that the highest zoom levels are only
available in some regions of the world (e.g. cities).

	center (tuple of floats) – (Latitude, longitude) pair denoting the map center.

	Examples:	

>>> zoom_level = 8
>>> center = (20.0, -10.0)
>>> viewport = InitialViewport.from_zoom_center(zoom_level, center)
>>> m = gmaps.figure(initial_viewport=viewport)

	
class gmaps.Heatmap(**kwargs)

	Heatmap layer.

Add this to a Map instance to draw a heatmap. A heatmap shows
the density of points in or near a particular area.

You should not instantiate this directly. Instead, use the
gmaps.heatmap_layer() factory function.

	Examples:	

>>> fig = gmaps.figure()
>>> locations = [(46.1, 5.2), (46.2, 5.3), (46.3, 5.4)]
>>> heatmap = gmaps.heatmap_layer(locations)
>>> heatmap.max_intensity = 2
>>> heatmap.point_radius = 3
>>> heatmap.gradient = ['white', 'gray']
>>> fig.add_layer(heatmap_layer)

	Parameters:	
	data (list of tuples) – List of (latitude, longitude) pairs denoting a single
point. Latitudes are expressed as a float between -90
(corresponding to 90 degrees south) and +90 (corresponding to
90 degrees north). Longitudes are expressed as a float
between -180 (corresponding to 180 degrees west) and 180
(corresponding to 180 degrees east).

	max_intensity (float, optional) – Strictly positive floating point number indicating the numeric value
that corresponds to the hottest colour in the heatmap gradient. Any
density of points greater than that value will just get mapped to
the hottest colour. Setting this value can be useful when your data
is sharply peaked. It is also useful if you find that your heatmap
disappears as you zoom in.

	point_radius (int, optional) – Number of pixels for each point passed in the data. This determines the
“radius of influence” of each data point.

	dissipating (bool, optional) – Whether the radius of influence of each point changes as you zoom in
or out. If dissipating is True, the radius of influence of each
point increases as you zoom out and decreases as you zoom in. If
False, the radius of influence remains the same. Defaults to True.

	opacity (float, optional) – The opacity of the heatmap layer. Defaults to 0.6.

	gradient (list of colors, optional) – The color gradient for the heatmap. This must be specified as a list
of colors. Google Maps then interpolates linearly between those
colors.
Colors can be specified as a simple string, e.g. ‘blue’,
as an RGB tuple, e.g. (100, 0, 0), or as an RGBA tuple, e.g.
(100, 0, 0, 0.5).

	
class gmaps.WeightedHeatmap(**kwargs)

	Heatmap with weighted points.

Add this layer to a Map instance to draw a heatmap. Unlike the plain
Heatmap layer, which assumes that all points should have equal weight,
this layer lets you specifiy different weights for points.

You should not instantiate this directly. Instead, use the
gmaps.heatmap_layer() factory function, passing in a
parameter for weights.

	Examples:	

>>> fig = gmaps.figure()
>>> locations = [(46.1, 5.2), (46.2, 5.3), (46.3, 5.4)]
>>> weights = [0.5, 0.2, 0.8]
>>> heatmap = gmaps.heatmap_layer(locations, weights=weights)
>>> heatmap.max_intensity = 2
>>> fig.add_layer(heatmap_layer)

	Parameters:	
	data (list of tuples) – List of (latitude, longitude, weight) triples for a single
point. Latitudes are expressed as a float between -90 (corresponding to
90 degrees south) and +90 (corresponding to 90 degrees north).
Longitudes are expressed as a float between -180
(corresponding to 180 degrees west) and +180 (corresponding to
180 degrees east). Weights must be non-negative.

	max_intensity (float, optional) – Strictly positive floating point number indicating the numeric value
that corresponds to the hottest colour in the heatmap gradient. Any
density of points greater than that value will just get mapped to
the hottest colour. Setting this value can be useful when your data
is sharply peaked. It is also useful if you find that your heatmap
disappears as you zoom in.

	point_radius (int, optional) – Number of pixels for each point passed in the data. This determines the
“radius of influence” of each data point.

	dissipating (bool, optional) – Whether the radius of influence of each point changes as you zoom in
or out. If dissipating is True, the radius of influence of each
point increases as you zoom out and decreases as you zoom in. If
False, the radius of influence remains the same. Defaults to True.

	opacity (float, optional) – The opacity of the heatmap layer. Defaults to 0.6.

	gradient (list of colors, optional) – The color gradient for the heatmap. This must be specified as a list
of colors. Google Maps then interpolates linearly between those
colors.
Colors can be specified as a simple string, e.g. ‘blue’,
as an RGB tuple, e.g. (100, 0, 0), or as an RGBA tuple, e.g.
(100, 0, 0, 0.5).

	
class gmaps.Symbol(location, **kwargs)

	Class representing a single symbol.

Symbols are like markers, but the point is represented by
an SVG symbol, rather than the default inverted droplet.
Symbols should be added to the map via the ‘Symbols’
widget.

	
class gmaps.MarkerOptions(**kwargs)

	Style options for a marker

	Parameters:	
	label (string, optional) – Text to be displayed inside the marker. Google maps only displays
the first letter of this string.

	hover_text (string, optional) – Text to be displayed when a user’s mouse is hovering over the marker.
If this is set to an empty string, nothing will appear when the user’s
mouse hovers over a marker.

	display_info_box (bool, optional) – Whether to display an info box when the user clicks on a marker.
Defaults to True if info_box_content is not an empty string,
or False otherwise.

	info_box_content (string, optional) – Content to be displayed in a box above a marker, when the user clicks
on it.

	
class gmaps.Marker(location, **kwargs)

	Class representing a marker.

Markers should be added to the map via the gmaps.marker_layer()
function or the gmaps.drawing_layer() function.

	Parameters:	
	location (tuple of floats) – (latitude, longitude) pair denoting the location of the marker.
Latitudes are expressed as a float between -90 (corresponding to 90
degrees south) and +90 (corresponding to 90 degrees north). Longitudes
are expressed as a float between -180 (corresponding to 180 degrees
west) and +180 (corresponding to 180 degrees east).

	label (string, optional) – Text to be displayed inside the marker. Google maps only displays
the first letter of this string.

	hover_text (string, optional) – Text to be displayed when a user’s mouse is hovering over the marker.
If this is set to an empty string, nothing will appear when the user’s
mouse hovers over a marker.

	display_info_box (bool, optional) – Whether to display an info box when the user clicks on a marker.
Defaults to True if info_box_content is not an empty string,
or False otherwise.

	info_box_content (string, optional) – Content to be displayed in a box above a marker, when the user clicks
on it.

	
class gmaps.Markers(**kwargs)

	A collection of markers or symbols.

	
class gmaps.GeoJsonFeature(**kwargs)

	Widget for a single GeoJSON feature.

Prefer to use the geojson_layer function to construct these,
rather than making them explicitly.

	
class gmaps.GeoJson(**kwargs)

	Widget for a collection of GeoJSON features.

Prefer to use the geojson_layer function to construct this,
rather than making them explicitly.

Use the features attribute on this class to change the style
of the features in this layer.

	
class gmaps.Directions(**kwargs)

	Directions layer.

Add this to a gmaps.Figure instance to draw directions.

Use the gmaps.directions_layer() factory function to
instantiate this class, rather than the constructor.

	Examples:	

>>> fig = gmaps.figure()
>>> start = (46.2, 6.1)
>>> end = (47.4, 8.5)
>>> waypoints = [(52.37403, 4.88969)]
>>> directions_layer = gmaps.directions_layer(start, end, waypoints)
>>> fig.add_layer(directions_layer)

There is a limitation in the number of waypoints allowed by Google
(currently 23). If it
fails to return directions, a DirectionsServiceException is raised.

>>> directions_layer = gmaps.Directions(data=data*10)
Traceback (most recent call last):
 ...
DirectionsServiceException: No directions returned: MAX WAYPOINTS EXCEEDED

	Parameters:	
	data (list of tuples of length >= 2) – List of (latitude, longitude) pairs denoting a single
point. The first pair denotes the starting point and the last pair
denote the end of the route.
Latitudes are expressed as a float between -90
(corresponding to 90 degrees south) and +90 (corresponding to
90 degrees north). Longitudes are expressed as a float
between -180 (corresponding to 180 degrees west) and 180
(corresponding to 180 degrees east).

	travel_mode (str, optional) – Choose the mode of transport. One of 'BICYCLING', 'DRIVING',
'WALKING' or 'TRANSIT'. A travel mode of 'TRANSIT'
indicates public transportation. Defaults to 'DRIVING'.

	avoid_ferries (bool, optional) – Avoids ferries where possible.

	avoid_highways (bool, optional) – Avoids highways where possible.

	avoid_tolls (bool, optional) – Avoids toll roads where possible.

	optimize_waypoints (bool, optional) – Attempt to re-order the supplied intermediate
waypoints to minimize overall cost of the route.

	
class gmaps.Bicycling(**kwargs)

	Bicycling layer.

Add this to a gmaps.Map or gmaps.Figure
instance to add cycling routes.

You should not instantiate this directly. Instead,
use the gmaps.bicycling_layer() factory function.

	Examples:	

>>> fig = gmaps.figure()
>>> fig.add_layer(gmaps.bicycling_layer())

	
class gmaps.Transit(**kwargs)

	Transit layer.

Add this to a gmaps.Map or a gmaps.Figure
instance to add transit (public transport) information.
This only affects regions for which Google has
transit information [https://www.google.com/landing/transit/cities/index.html].

You should not instantiate this directly. Instead,
use the gmaps.transit_layer() factory function.

	Examples:	

map centered on London
>>> fig = gmaps.figure(center=(51.5, -0.2), zoom_level=11)
>>> fig.add_layer(gmaps.transit_layer())
>>> fig

	
class gmaps.Traffic(**kwargs)

	Traffic layer

Add this to a gmaps.Map or a gmaps.Figure
instance to add traffic information to the map, where
supported.

You should not instantiate this directly. Instead,
use the gmaps.traffic_layer() factory function.

	Examples:	

map centered on London
>>> fig = gmaps.figure(center=(51.5, -0.2), zoom_level=11)
>>> fig.add_layer(gmaps.traffic_layer())
>>> fig

	Parameters:	auto_refresh (bool, optional) – Whether the traffic layer refreshes with updated
information automatically. This is true by default.

	
class gmaps.Drawing(**kwargs)

	Widget for a drawing layer

Add this to a gmaps.Map or gmaps.Figure instance to let
you draw on the map.

You should not need to instantiate this directly. Instead, use the
gmaps.drawing_layer() factory function.

	Examples:	

You can use the drawing layer to add lines, markers and
polygons to a map:

>>> fig = gmaps.figure()
>>> drawing = gmaps.drawing_layer(features=[
 gmaps.Line(end=(46.23, 5.86), start=(46.44, 5.24)),
 gmaps.Marker(location=(46.88, 5.45)),
 gmaps.Polygon([(46.72, 6.06), (46.48, 6.49), (46.79, 6.91)])
])
>>> fig.add_layer(drawing)
>>> fig

You can also use the drawing layer as a way to get user input.
The user can draw features on the map. You can then get the
list of features programatically.

>>> fig = gmaps.figure()
>>> drawing = gmaps.drawing_layer()
>>> fig.add_layer(drawing)
>>> fig
>>> # Now draw on the map
>>> drawing.features
[Marker(location=(46.83, 5.56)),
Marker(location=(46.46, 5.91)),
Line(end=(46.32, 5.98), start=(46.42, 5.12))]

You can bind callbacks that are executed when a new feature is added. For
instance, you can use geopy [http://geopy.readthedocs.io/en/latest/] to
get the address corresponding to markers that you add on the map:

API_KEY = "Aiz..."

import gmaps
import geopy

gmaps.configure(api_key=API_KEY)
fig = gmaps.figure()
drawing = gmaps.drawing_layer()

geocoder = geopy.geocoders.GoogleV3(api_key=API_KEY)

def print_address(feature):
 try:
 print(geocoder.reverse(feature.location, exactly_one=True))
 except AttributeError as e:
 # Not a marker
 pass

drawing.on_new_feature(print_feature)
fig.add_layer(drawing)
fig # display the figure

	Parameters:	
	features (list of features, optional) – List of features to draw on the map. Features must be one of
gmaps.Marker, gmaps.Line or gmaps.Polygon.

	marker_options (gmaps.MarkerOptions, dict or None, optional) – Options controlling how markers are drawn on the map.
Either pass in an instance of gmaps.MarkerOptions,
or a dictionary with keys hover_text, display_info_box,
info_box_content, label (or a subset of these). See
gmaps.MarkerOptions for documentation on possible
values.

	mode (str, optional) – Initial drawing mode. One of DISABLED, MARKER, LINE,
POLYGON or DELETE. Defaults to MARKER if
toolbar_controls.show_controls is True, otherwise defaults to
DISABLED.

	toolbar_controls (gmaps.DrawingControls, optional) – Widget representing the drawing toolbar.

	
on_new_feature(callback)

	Register a callback called when new features are added

	Parameters:	callback (callable) – Callable to be called when a new feature is added.
The callback should take a single argument, the
feature that has been added. This can be an instance
of gmaps.Line, gmaps.Marker or
gmaps.Polygon.

	
class gmaps.DrawingControls(**kwargs)

	Widget for the toolbar snippet representing the drawing controls

	Parameters:	show_controls (bool, optional) – Whether the drawing controls should be shown. Defaults to True.

	
class gmaps.Line(start, end)

	Widget representing a single line on a map

Add this line to a map via the gmaps.drawing_layer() function, or by
passing it directly to the .features array of an existing instance of
gmaps.Drawing.

	Examples:	

>>> fig = gmaps.figure()
>>> drawing = gmaps.drawing_layer(features=[
 gmaps.Line(start=(46.44, 5.24), end=(46.23, 5.86)),
 gmaps.Line(start=(48.44, 1.32), end=(47.13, 3.91))
])
>>> fig.add_layer(drawing)

You can also add a line to an existing gmaps.Drawing
instance:

>>> fig = gmaps.figure()
>>> drawing = gmaps.drawing_layer()
>>> fig # display the figure

You can now add lines directly on the map:

>>> drawing.features = [
 gmaps.Line(start=(46.44, 5.24), end=(46.23, 5.86)),
 gmaps.Line(start=(48.44, 1.32), end=(47.13, 3.91))
]

	Parameters:	
	start (tuple of floats) – (latitude, longitude) pair denoting the start of the line. Latitudes
are expressed as a float between -90 (corresponding to 90 degrees
south) and +90 (corresponding to 90 degrees north). Longitudes are
expressed as a float between -180 (corresponding to 180 degrees west)
and +180 (corresponding to 180 degrees east).

	end – (latitude, longitude) pair denoting the end of the line. Latitudes
are expressed as a float between -90 (corresponding to 90 degrees
south) and +90 (corresponding to 90 degrees north). Longitudes are
expressed as a float between -180 (corresponding to 180 degrees west)
and +180 (corresponding to 180 degrees east).

	
class gmaps.Polygon(path)

	Widget representing a closed polygon on a map

Add this polygon to a map via the gmaps.drawing_layer()
function, or by passing it directly to the .features array
of an existing instance of gmaps.Drawing.

	Examples:	

>>> fig = gmaps.figure()
>>> drawing = gmaps.drawing_layer(features=[
 gmaps.Polygon([(46.72, 6.06), (46.48, 6.49), (46.79, 6.91)])
])
>>> fig.add_layer(drawing)

You can also add a polygon to an existing gmaps.Drawing
instance:

>>> fig = gmaps.figure()
>>> drawing = gmaps.drawing_layer()
>>> fig # display the figure

You can now add polygons directly on the map:

>>> drawing.features = [
 gmaps.Polygon([(46.72, 6.06), (46.48, 6.49), (46.79, 6.91)])
]

	Parameters:	path (list of tuples of floats) – List of (latitude, longitude) pairs denoting each point on the polygon.
Latitudes are expressed as a float between -90 (corresponding to 90
degrees south) and +90 (corresponding to 90 degrees north). Longitudes
are expressed as a float between -180 (corresponding to 180 degrees
west) and +180 (corresponding to 180 degrees east).

Datasets

	
gmaps.datasets.list_datasets()

	List of datasets available

	
gmaps.datasets.dataset_metadata(dataset_name)

	Information about the dataset

This returns a dictionary containing a ‘description’,
a list of the dataset headers and optionally information
about the dataset source.

	Examples:	

>>> dataset_metadata("earthquakes")
{'description': 'Taxi pickup location data in San Francisco',
 'headers': ['latitude', 'longitude']}

	
gmaps.datasets.load_dataset(dataset_name)

	Fetch a dataset, returning an array of tuples.

	
gmaps.datasets.load_dataset_as_df(dataset_name)

	Fetch a dataset, returning a pandas dataframe.

GeoJSON geometries

	
gmaps.geojson_geometries.list_geometries()

	List of GeoJSON geometries available

	
gmaps.geojson_geometries.geometry_metadata(geometry_name)

	Information about the geometry.

This returns a dictionary containing a ‘description’.

	Examples:	

>>> geometry_metadata("countries")
{'description': 'Map of world countries'}

	
gmaps.geojson_geometries.load_geometry(geometry_name)

	Fetch a geometry.

	Returns:	A python dictionary containing the geometry.

	Examples:	

>>> import gmaps
>>> import gmaps.geojson_geometries
>>> gmaps.configure(api_key="AIza...")
>>> countries_geojson = gmaps.geojson_geometries.load_geometry('countries')

>>> fig = gmaps.figure()
>>> gini_layer = gmaps.geojson_layer(countries_geojson)
>>> fig.add_layer(gini_layer)
>>> fig

Traitlets

	
class gmaps.geotraitlets.ColorAlpha(default_value=traitlets.Undefined, allow_none=False, **metadata)

	Trait representing a color that can be passed to Google maps.

This is either a string like ‘blue’ or ‘#aabbcc’ or an RGB
tuple like (100, 0, 250) or an RGBA tuple like (100, 0, 250, 0.5).

	
validate(obj, value)

	Verifies that ‘value’ is a string or tuple and converts it to a
value like ‘rgb(x,y,z)’

	
class gmaps.geotraitlets.ColorString(default_value=traitlets.Undefined, allow_none=False, read_only=None, help=None, config=None, **kwargs)

	A string holding a color recognized by Google Maps.

Apparently Google Maps accepts ‘all CSS3 colors, including
RGBA, [...] except for extended named colors and HSL(A)
values’.

Using this <https://www.w3.org/TR/css3-color/#html4> page
for reference.

	
default_value = traitlets.Undefined

	

	
class gmaps.geotraitlets.Latitude(default_value=traitlets.Undefined, allow_none=False, **kwargs)

	Float representing a latitude

Latitude values must be between -90 and 90.

	
default_value = traitlets.Undefined

	

	
class gmaps.geotraitlets.Longitude(default_value=traitlets.Undefined, allow_none=False, **kwargs)

	Float representing a longitude

Longitude values must be between -180 and 180.

	
default_value = traitlets.Undefined

	

	
class gmaps.geotraitlets.Point(default_value=traitlets.Undefined)

	Tuple representing a (latitude, longitude) pair.

	
class gmaps.geotraitlets.ZoomLevel(default_value=traitlets.Undefined, allow_none=False, **kwargs)

	Integer representing a zoom value allowed by Google Maps

	
default_value = traitlets.Undefined

	

Contributing to jupyter-gmaps

	Contributing
	How to contribute

	Installing a development version of gmaps

	Testing

	Guidelines
	Workflow

	Code

	How to release jupyter-gmaps

Contributing

We want to start by thanking you for using Jupyter-gmaps. We very much appreciate all of the users who catch bugs, contribute enhancements and features or add to the documentation. Every contribution is meaningful, so thank you for participating.

How to contribute

Code contributions are more than welcome. Take a look at the issue tracker [https://github.com/pbugnion/gmaps/issues], specially issues labelled as beginner-friendly. These are issues which have a lot of impact on the project, but don’t require understanding the entire codebase.

Beyond code, the following contributions will make gmaps a better project:

	additional datasets related to geographical data. The data needs to be clean, of reasonable size (ideally not more than 1MB), and should be clearly related to geography.

	additional GeoJSON geometries. These should be clean and reasonably small (ideally 1-3MB).

	Examples of you using Jupyter-gmaps. If you’ve used gmaps and have an artefact to show for it (a blogpost or an image), I’m very happy to put a link in the documentation.

Installing a development version of gmaps

See the installation instructions [http://jupyter-gmaps.readthedocs.io/en/latest/install.html#development-version]
for installing a development version.

Testing

We use nose for unit testing. Run nosetests in the root directory of the project to run all the tests,
or in a specific directory to just run the tests in that directory.

Guidelines

Workflow

We loosely follow the git workflow [http://docs.scipy.org/doc/numpy/dev/gitwash/development_workflow.html] used in numpy development. Features should
be developed in separate branches and merged into the master branch when
complete.

Code

Please follow the PEP8 conventions [http://www.python.org/dev/peps/pep-0008/] for formatting and indenting code and for variable names.

How to release jupyter-gmaps

This is a set of instructions for releasing to Pypi. The release process is somewhat automated with an invoke [http://docs.pyinvoke.org/en/latest/getting_started.html] task file. You will need invoke installed.

	Run invoke prerelease <version>, where version is the version number of the release candidate. If you are aiming to release version 0.5.0, this will be 0.5.0-rc1. This will automatically bump the version numbers and upload the release to Pypi and NPM. Unfortunately, Pypi does not recognize this as a pre-release, and therefore gives it more precendence than the previous, stable release. To correct this, go to the gmaps page on Pypi, then go to the releases tab and manually hide that release and un-hide the previous one.

	Verify that you can install the new version and that it works correctly with pip install gmaps==<new version> and jupyter nbextension enable --py --sys-prefix gmaps. It’s best to verify the installation on a clean virtual machine (rather than just in a new environment) since installation is more complex than for pure Python packages.

	If the manual installation tests failed, fix the issue and repeat the previous steps with rc2 etc. If installing worked, proceed to the next steps.

	Run invoke release <version>, where version is the version number of the release (e.g. 0.5.0). You will be prompted to enter a changelog.

	Verify that the new version is available by running pip install gmaps in a new virtual environment.

	Run invoke postrelease <version>, where version is the version number of the new release. This will commit the changes in version, add an annotated tag from the changelog and push the changes to Github. It will then change the version back to a -dev version.

	Run invoke release_conda <version> to release the new version to conda-forge.

Release notes

Version 0.7.0

	This minor release adds a drawing layer, giving the user the ability to add

arbitrary lines, markers and polygons to a map. The developer can bind callbacks
that are run when a feature is added, allowing the development of complex, widgets-
based application on top of jupyter-gmaps (PR 183).
- It fixes a bug where the bounds were incorrectly calculated when two longitudes coincided (PR 204).
- It fixes a bug where, for single latitudes, the returned bounds could stretch beyond what Google Maps allows (PR 204)

Version 0.6.2

	This minor release:

	
	fixes a bug that was introduced by shadowing a reserved traitlets method (PR 184)

	migrates the codebase to flake8 3.5.0 (PR 195)

Version 0.6.1

This is a patch release that is identical to 0.6.0. The dependencies in the
conda-forge release of 0.6.0 were badly specified.

Version 0.6.0

	This release:

	
	PRs 166, 171 and 172 migrate jupyter-gmaps to ipywidgets 7.0.0 (released on the 18th August 2017). This is a breaking change: jupyter-gmaps will not work with ipywidgets 6.x versions.

	PRs 163 and 169 add a layer for displaying bicycling information.

	PRs 165 and 169 add a layer for displaying transit (public transport) information.

	PR 170 adds a layer for displaying traffic information.

	PR 173 improves the layout of the CSS

	PR 173 improves the CSS used for embedding

Version 0.5.4

	This release:

	
	Fixes a bug where bounds were incorrectly calculated for the case where there was a single point in the data (PR 160).

	Allows setting the travel mode in the directions layer (PR 157).

	Fixes the release script to use a fork of the conda-forge feedstock (PR 156).

Version 0.5.3

	This release adds two minor features:

	
	The directions layer can be customised, in particular how the route is calculated ([PR 153](https://github.com/pbugnion/gmaps/pull/153))

	The user can explicitly set the map zoom and center ([PR 154](https://github.com/pbugnion/gmaps/pull/154))

	It also makes the following non-breaking changes:

	
	Refactor JS to use ES6 classes.

Version 0.5.3

	This release adds two minor features:

	
	The directions layer can be customised, in particular how the route is calculated ([PR 153](https://github.com/pbugnion/gmaps/pull/153))

	The user can explicitly set the map zoom and center ([PR 154](https://github.com/pbugnion/gmaps/pull/154))

	It also makes the following non-breaking changes:

	
	Refactor JS to use ES6 classes.

Version 0.5.2

	This is a bugfix release.

	
	Bounds are now calculated correctly when there are multiple layers (PR 148).

	Latitude bounds cannot exceed the maximum allowed by Google Maps (PR 149).

	Alpha values of 1.0 are now allowed.

Version 0.5.1

	This patch release:

	
	fixes flakiness downloading images as PNGs (issue 129).

	adds an error box view for errors that come up in the frontend.

	It adds improvements to the development workflow:

	
	License is included in the source to facilicate deployment to conda-forge

	Facilitate installation in dev mode.

	Automation of release process.

Version 0.5.0

This release:

	introduces a new Figure widget that wraps a toolbar and a map

	adds the ability to export maps to PNG

	fixes bugs and outdated dependencies that prevented embedding maps in
rendered HTML.

Version 0.4.1

	Add a GeoJSON layer (PRs #106 and #115)

	Add the geojson_geometries module for bundling GeoJSON geometries with jupyter-gmaps (PR #111).

	Minor improvements to README and compatibility guide.

	Support for Python 3.6 (PR #107).

Version 0.4.0

	
	Add factory functions to make creating layers easier. Instead of creating widgets directly, the widgets are instantiated through *_layer() functions which are easier to use and more tolerant of user input. This fixes:

	
	passing arbitrary iterables to the factory function (issue #66)

	passing more complex sets of options (issue #65)

	The directions interface is now a first class layer (issue #64)

	A regression whereby the API documentation wasn’t building on readthedocs is now fixed (PR #105).

Version 0.3.6

	Adds info boxes to the marker and symbol layers (PR #98).

Version 0.3.5

	Bugfix in deprecated heatmap method (PR #89).

Version 0.3.4

	Add marker and symbol layer (PR #78)

	Fix bug involving incorrect latitude bound calculation.

Version 0.3.3

	Improve automatic bounds calculations for heatmaps (PR #84)

Version 0.3.2

	Allow setting heatmap options (issues #74)

	Basic unit tests for traitlets, mixins and datasets

	Continuous integration with Travis CI.

Version 0.3.1

Fix release to allow injecting Google maps API keys. Google maps now mandates API keys, so this release provides a way to pass in a key (issue #61).

This release also includes a fix for having multiple layers on the same map.

Version 0.3.0

Complete re-write of gmaps to work with IPython 4.2 and ipywidgets 5.x. This release is at feature parity with the previous release, but the interface differs:

	Maps are now built up from a base to which we add layers.

	Heatmaps and weighted heatmaps are now layers that can be added to the base map.

	Add the acled_africa dataset to demonstrate heatmaps with a substantial amount of data.

	Now fits into the Jupyter installation convention for widget extensions.

	Add sphinx documentation

	Remove example notebooks (these may be added back in a later release)

Version 0.2.2

	Remove dependency on Numpy

	Fix broken datasets example (issue #52)

Version 0.2.1

test release – no changes.

Version 0.2

	IPython 4.0 compatibility

	Python 3 compatibility

	Drop IPython 2.x compatibility

Version 0.1.6

Fixed typo in setup script.

Version 0.1.5

Weighted heatmaps and datasets

	Added possibility of including weights in heatmap data.

	Added a datasets module to allow new users to play around with data
without having to find their own dataset.

Version 0.1.4

Another bugfix release.

	Fixed a bug that arose when using heatmap with default values of some of the
parameters.

Version 0.1.3

Bugfix release.

	Fixed a bug that arose when using the heatmap with IPython2.3 in the
previous release. The bug was caused by the slightly different traitlets API
between the two IPython versions.

Version 0.1.2

Minor heatmap improvements.

	Exposed the ‘maxIntensity’ and ‘radius’ options for heatmaps.

Version 0.1.1

Bugfix release.

	Ensures the notebook extensions are actually included in the source
distribution.

Version 0.1

Initial release.

	Allows plotting heatmaps from a list / array of pairs of longitude, latitude
floats on top of a Google Map.

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 gmaps	

 	
 	
 gmaps.datasets	

 	
 	
 gmaps.geojson_geometries	

 	
 	
 gmaps.geotraitlets	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | S
 | T
 | V
 | W
 | Z

A

 	
 	add_layer() (gmaps.Figure method)

B

 	
 	Bicycling (class in gmaps)

 	
 	bicycling_layer() (in module gmaps)

C

 	
 	ColorAlpha (class in gmaps.geotraitlets)

 	
 	ColorString (class in gmaps.geotraitlets)

 	configure() (in module gmaps)

D

 	
 	dataset_metadata() (in module gmaps.datasets)

 	default_value (gmaps.geotraitlets.ColorString attribute)

 	(gmaps.geotraitlets.Latitude attribute)

 	(gmaps.geotraitlets.Longitude attribute)

 	(gmaps.geotraitlets.ZoomLevel attribute)

 	
 	Directions (class in gmaps)

 	directions_layer() (in module gmaps)

 	Drawing (class in gmaps)

 	drawing_layer() (in module gmaps)

 	DrawingControls (class in gmaps)

F

 	
 	Figure (class in gmaps)

 	figure() (in module gmaps)

 	
 	from_data_bounds() (gmaps.InitialViewport static method)

 	from_zoom_center() (gmaps.InitialViewport static method)

G

 	
 	GeoJson (class in gmaps)

 	geojson_layer() (in module gmaps)

 	GeoJsonFeature (class in gmaps)

 	
 	geometry_metadata() (in module gmaps.geojson_geometries)

 	gmaps.datasets (module)

 	gmaps.geojson_geometries (module)

 	gmaps.geotraitlets (module)

H

 	
 	Heatmap (class in gmaps)

 	
 	heatmap_layer() (in module gmaps)

I

 	
 	InitialViewport (class in gmaps)

L

 	
 	Latitude (class in gmaps.geotraitlets)

 	Line (class in gmaps)

 	list_datasets() (in module gmaps.datasets)

 	list_geometries() (in module gmaps.geojson_geometries)

 	
 	load_dataset() (in module gmaps.datasets)

 	load_dataset_as_df() (in module gmaps.datasets)

 	load_geometry() (in module gmaps.geojson_geometries)

 	locations_to_list() (in module gmaps.locations)

 	Longitude (class in gmaps.geotraitlets)

M

 	
 	Map (class in gmaps)

 	Marker (class in gmaps)

 	
 	marker_layer() (in module gmaps)

 	MarkerOptions (class in gmaps)

 	Markers (class in gmaps)

O

 	
 	on_new_feature() (gmaps.Drawing method)

P

 	
 	Point (class in gmaps.geotraitlets)

 	
 	Polygon (class in gmaps)

S

 	
 	Symbol (class in gmaps)

 	
 	symbol_layer() (in module gmaps)

T

 	
 	Traffic (class in gmaps)

 	traffic_layer() (in module gmaps)

 	
 	Transit (class in gmaps)

 	transit_layer() (in module gmaps)

V

 	
 	validate() (gmaps.geotraitlets.ColorAlpha method)

W

 	
 	WeightedHeatmap (class in gmaps)

Z

 	
 	ZoomLevel (class in gmaps.geotraitlets)

 _images/weighted-heatmap-example.png
In [24]: import gmaps
import gmaps.datasets
gmaps.configure(api_key="AIz...")

In [25]: df = gmaps.datasets.load dataset_as_df("earthquakes")

df.head()
Out[25]: latitude longitude magnitude
0 65.193300 -149.072500 1.70
1 38.791832 -122.780830 2.10
2 38.818001 -122.792168 0.48
3 33.601667 -116.727667 0.78
4 37.378334 -118.520836 3.64

In [26]: fig = gmaps.figure()
heatmap layer = gmaps.heatmap_layer(
df[["latitude", "longitude"]], weights=df["magnitude"],
max_intensity=30, point_radius=3.0

)
fig.add_layer(heatmap_layer)
fig
<
!
Map Satellite : *
L
\
\
\\ Greenland .
\\ -
\\
e
V‘ /(/4 Fi\nland
// Icelgnd SvEeden
Russia v . !
P Norw:;y

United ~
Canada Kingdom - B 4

e, -

R R L eI

~ = N L7 Ge)-rEny Ukraine Raea
i L : C ﬁ I

SR =3 /\L«}’W

: <
s - . p Spain 2
X Bachioa South Kore: ¥ P,\;ir/tfﬁ e i North I " Ry ﬁ:T”rlfL}SI /\>
Stan R 2 . ’ i Atlantic \ « | Afgh
¥ o e veeen - I Ocean g 's (\{?@2 Iran
an S R ;EE - .t \ 4 J_[Algeria | | jbya | Egypt ' Pa
India TR 5 = b Mexico Y/ i | saudi Avabi

L
Colombia &

)
|
|
|
|
|
|
|
|
. |
|
|
.X w;) :', : - -) E . |Mali T Niger]ch . sudan/‘:\r,;/\/
“ N ®e | = AT a : +
“ ! . N ’genezuela k’é || Nigeria < Ethiopia~
I 58 :

_images/geojson-1.png
In [60]: countries_geojson = gmaps.geojson_geometries.load geometry('countries')
fig = gmaps.figure()
gini_layer = gmaps.geojson_layer(countries_geojson)
fig.add_layer(gini_layer)
fig

L3

Map Satellite

Atlantic
Ocean

Atlantic
Ocean

B0y
Pacific
Ocean

Pacific
Ocean

_images/starbucks-kfc-example.png
In [54]:

df = gmaps.datasets.load_dataset_as_df("starbucks_kfc_uk")

starbucks_df = df[df["chain name"] == "starbucks"]
starbucks_df starbucks_df[['latitude', 'longitude']]

kfc_df
kfc_df

df[df["chain_name"] == "kfc"]
kfc_df[['latitude', 'longitude']]

starbucks_layer = gmaps.symbol_ layer(
starbucks_df, fill_color="rgba(0, 150, 0, 0.4)",
stroke_color="rgba(0, 150, 0, 0.4)", scale=2

)

kfc_layer = gmaps.symbol_layer(
kfc_df, fill color="rgba(200, 0, 0, 0.4)",
stroke_color="rgba (200, 0, 0, 0.4)", scale=2
)

fig = gmaps.figure()
fig.add_layer(starbucks_layer)
fig.add_layer(kfc_layer)

fig

Map Satellite

»
Galway
Ireland
Limerick
B Cork

Gooale

_images/starbucks-symbols.png
In [45]:

df = gmaps.datasets.load_dataset_as_df("starbucks_kfc_uk")

starbucks_df = df[df["chain name"

starbucks_df

starbucks_layer = gmaps.symbol_ layer(

starbucks_df[['latitude’,

"starbucks"]
'longitude']]

starbucks_df, fill color="green", stroke color="green", scale=2

)

fig = gmaps.figure()
fig.add_layer(starbucks_layer)
fig

L3

Map Satellite

oogle

%

&
\
Copenhagen
1

i

- Denmark 13

& e N? o E] o
Map data ©2017 GeoBasis-DE/BKG (©2009), Google, Inst. Geogr. Nacional, Mapa GISrael, ORION-ME ' Terms of Use

_images/marker-example.png
In [27]: marker_locations = [
(-34.0, -59.166672),
(-32.23333, -64.433327),
(40.166672, 44.133331),
(51.216671, 5.0833302),
(51.333328, 4.25)

1

fig = gmaps.figure()
markers = gmaps.marker layer(marker locations)
fig.add_layer(markers)
fig
3

Map Satellite

H]
| |
| |
| |
| |
| |
| |
| |
| |
\ \

&
< SOUTH
AMERICA
e

OCEANIA OCEANIA

_images/plainmap2.png
In [5]: import gmaps
gmaps.configure(api_key="AIz...")

In [6]: fig = gmaps.figure()
fig

}%7

<
//)) ~ g
9 (o 7 / Grindglwald
/i m A

La sanne 167 7 <9 ~Lauterbrunnen

o oy L - 27
2] P y .
; R ~ < — ’
f \ ~f- i3
0 2 i - ¢
) % # :
R #CAnnemasse - ’ s)
L/ 7) . N DéM(

N2 . s
N3 ‘A ~ wﬁ{ s 4 , L ¥ R :)
A410 A B Zermatt”. |\ S \ Jlug A
P 2 \r ¥ 3
4 A0 RS Map data ©2017 GeoBasis-DE/BKG (©2009), Goog | Terms of Use * Report a map error

~ Chamoni

_images/bicycling-layer.png
In [5]:

fig = gmaps.figure(center=(51.5, -0.2), zoom_ level=11)
fig.add layer(gmaps.bicycling_ layer())
fig

< ok,
meToN
S

WESTMINST RigNe® 9%
' «rx‘ il

ﬂmx}on " \<‘ 2

LABY RN 52\ n
x" = g Ch)&v >lm > L

ulwi] e é [
yj‘EAz\M \)\ %&Smh ._\E% +

"‘ A X : ~"H/ k

ficke ham,Rlchmond

g —~
Teddlngto x
a&(ot

<\ SIA RO 3
1 -.Jcl

Y (] 7? \ ¢ N
WIMBLE/DGN * Map data ©2017 Google, |Terms of Use Report a map error

_images/marker-info-box-example.png
In [29]:

nuclear_ power_plants = [

{"name": "Atucha", "location": (-34.0, -59.167), "active_reactors": 1},
{"name": "Embalse", "location": (-32.2333, -64.4333), "active reactors": 1},
{"name": "Armenia", "location": (40.167, 44.133), "active_reactors": 1},
{"name": "Br", "location": (51.217, 5.083), "active_reactors": 1},
{"name": "Doel", "location": (51.333, 4.25), "active_reactors": 4},
{"name": "Tihange", "location": (50.517, 5.283), "active_reactors": 3}

1

plant_locations = [plant["location"] for plant in nuclear_ power_ plants]

info_box template = """

<dl1l>

<dt>Name</dt><dd>{name}</dd>
<dt>Number reactors</dt><dd>{active_reactors}</dd>
</d1>

nun

plant_info = [info_box template.format(**plant) for plant in nuclear_power plants]

marker layer = gmaps.marker_layer(plant_locations, info_box content=plant_info)
fig = gmaps.figure()
fig.add layer (marker_layer)

fig
<
/ Iceland
Map Satellite
/ oA
R
K Canada
—_—
N S 3
| g
: Noq;h United States North
! iﬁzaf N Atlantic
: \”\v\ Ocean
: Mexico i
i .| Name p
L4 g " f~
: - Atucha e S chad ““ﬂe/t; Y
| - Number reactors SRRSO N ol
I 1= e 7
T B T {j,t DR Congo 2—— Kﬁ’lyﬁ
\\ Z/\r,‘ \Tanzania
) I SN
/// a — Angola -+ \[}47\
,I}olivia / No: Tb'%?\/ 1 N .
S amlagswaﬁa/ Madagascar Indian
South Chil South Ty} Ocean
Pacific (4 Atlantic ey
Geaam [Ocean South Africa

)
(
/ Argentina
I}

Q
o
O

(ol
®

~

g Japan
South Korea

Indonesia

Papua New
Guinea

Australia +

oW
Zaalane

Map data ©2017 = Terms of Use

nav.xhtml

 Table of Contents

 		jupyter-gmaps

 		Installation

 		Installing gmaps with conda

 		Installing gmaps with pip

 		Development version

 		Source code

 		Authentication

 		Getting started

 		Basic concepts

 		Base maps

 		Heatmaps

 		Preventing dissipation on zoom

 		Setting the color gradient and opacity

 		Weighted heatmaps

 		Markers and symbols

 		Dataset size limitations

 		GeoJSON layer

 		GeoJSON geometries bundled with Gmaps

 		Loading your own GeoJSON

 		Drawing markers, lines and polygons

 		Directions layer

 		Bicycling, transit and traffic layers

 		Building applications with jupyter-gmaps

 		Reacting to user actions on the map

 		Exporting maps

 		Exporting to PNG

 		Exporting to HTML

 		API documentation

 		Figures and layers

 		Utility functions

 		Low level widgets

 		Datasets

 		GeoJSON geometries

 		Traitlets

 		Contributing to jupyter-gmaps

 		Contributing

 		How to contribute

 		Installing a development version of gmaps

 		Testing

 		Guidelines

 		How to release jupyter-gmaps

 		Release notes

 		Version 0.7.0

 		Version 0.6.2

 		Version 0.6.1

 		Version 0.6.0

 		Version 0.5.4

 		Version 0.5.3

 		Version 0.5.3

 		Version 0.5.2

 		Version 0.5.1

 		Version 0.5.0

 		Version 0.4.1

 		Version 0.4.0

 		Version 0.3.6

 		Version 0.3.5

 		Version 0.3.4

 		Version 0.3.3

 		Version 0.3.2

 		Version 0.3.1

 		Version 0.3.0

 		Version 0.2.2

 		Version 0.2.1

 		Version 0.2

 		Version 0.1.6

 		Version 0.1.5

 		Version 0.1.4

 		Version 0.1.3

 		Version 0.1.2

 		Version 0.1.1

 		Version 0.1

_images/acled_africa_heatmap_basic.png
locations = gmaps.datasets.load dataset_as_df("acled africa")
fig = gmaps.figure()

heatmap_ layer = gmaps.heatmap_layer(locations)
fig.add_layer(heatmap_layer)

fig

L3

Map Satellite

Map data ©2017 INEGI Imagery ©2017 NASA, TerraMetrics | Terms of Use

_images/base_map_example.png
In [19]:

new_york_coordinates = (40.75, -74.00)
gmaps.figure(center=new_york coordinates, zoom level=12)

r-t 7 3

Map Satellite > 4 g 3 S
3 / Rikers Island

EAST ELMHURS

+,. Central Park Zoo
aco

o ~
5 JACKSON
(O8), §7 MiDTOWN | JACKSONz = Cill
I) &
Empire State Building @ <
Hoboken - COROM

o Whitney Museum
of American Art

LOWER

| MANHATTAN o
= A oM ;0\\” {2
© <&°" /MIDDLE

= @
Metropolitan Ave
o) ==l i AN
WILLIAI SEURs = -
4)
A\
F\‘f"‘\ r3 RIDGEWOOD "

- Map data ©2017 Google ~ Termsof Use Report a map error

_images/geojson-2.png
In [62]: fig = gmaps.figure()

gini_layer = gmaps.geojson_layer(
countries_geojson,
fill_color=colors,
stroke_color=colors,
fill opacity=0.8)

fig.add_layer(gini_layer)

fig

.

Map Satellite

gogle Sl o e

_images/drawing_example2.png
fig = gmaps.figure(center=(51.5, -0.1), zoom level=12)

drawing = gmaps.drawing layer(
features=[gmaps.Polygon(london_congestion_zone_path)],
show_controls=False

)
fig.add_layer(drawing)

fig

<

Mandir [A e it S 0 (
Map Satellite "/)/ ‘ B ’(ﬂDENTOWN\ ?% o * . ')0%7 |

- - ‘ ZSL London Zoo & \ S v
o

KENSAL GREEN itisH ~
£ \; 4404. ‘st 4 . >
G e b
P o o Yy ' British Museum
Wes s B I~
WHITE CITY.) : -

- g LN ﬁl\-ondﬁ

. 1 - 7 > H
AI203 City Airport
o ele sHEpHERD;s\ ‘ 4 l 3 : -%p:
BUSH : : :
¥ o . 72, KENSINGTON (ig Ben R i 4 B

2 i .
*

&
S o

HAMMERSMITH

>
tamford Bndgf)@ ~—
FULHAM Royal Observatory
| f Greenwich
pat® S

_images/traffic-layer.png
In [5]:

fig = gmaps.figure(center=(51.5, -0.2), zoom_ level=11)
fig.add layer(gmaps.traffic_layer())
fig

<
J Map Satellite | ENT CR(

7\

— \

» | STOKE
INEWINGTON
A

I wem y Brent: P}
- AN
Tprd»\ N

RLART.
=" \- ji’
0 JCANARY WHARF

\

- \-BRITON /

lap data ©2017 Google ' Terms of Use Report a map error

_images/plainmap3.png
In [5]:

In [7]:

import gmaps
gmaps.configure(api_key="AIz...")

fig = gmaps.figure()

generate some (latitude, longitude) pairs
locations = [(51.5, 0.1), (51.7, 0.2), (51.4, -0.2), (51.49, 0.1)]

heatmap_ layer = gmaps.heatmap_layer(locations)
fig.add_layer(heatmap_layer)

fig

.

VA N \T e Swiuviy
Ma Satellite | Frinton-on-Sea
 Map Aylesbury : 7 \ \

Witham Clacton-on-Sea

Chelmsford ~ Maldon
Chiltern)
Hills AONB

»

Didcot ; 3
J SO Basildon D
Fa . . Southend-on-Sea
Maidenhea 0% o =7
%) Lz - ‘ Canvey Island
18 (W Winds @;_ = - P
di M4 ' S 5 { &
Rizadlng SO 3 ‘) Vo
Brackinell b’ ¢ Isle of
‘ ggpey hitstabl
> . Whitstable
‘ \ Cam s /-/
’ .) <) Faversham
a k L <)
J ~ Basingstok: Maidstone:
hurch i C %

. [AN
' GJO,O‘gle - i . Map data ©2017 Google = Terms of Use * Report a map error

_images/drawing_example1.png
import gmaps
fig = gmaps.figure(center=(51.5, 0.1), zoom level=9)

Features to draw on the map
gmt_meridian =

gmaps.Line(start=(52.0, 0.0), end=(50.0, 0.0))

greenwich = gmaps.Marker((51.3, 0.0), info_box content='Greenwich')
drawing = gmaps.drawing_ layer(features=[greenwich, gmt_meridian])
fig.add_layer(drawing)
fig
& /9|7 b WO

S

N
) Aylesbury -
Map Satellite <

St Albans
V

Hills AONB

Maidenhead MZS'.
un, Windsor || Y
Reading M4) 3 I'i)z
- ~ Bracknell ; lv

ham N

M3 Croydon

\g v
Camberley f Epsom
/ Woking g
Farnborough k SurreyHills
Basingstoke g b A’r'ea of p
A/m{ > Gu|ldford @utstandm

Natural Beauty
Am

‘Google

‘\Frinton-on-Sea
(1

Witham Clacton-on-Sea

Chelmsford ~ maldon

Southend-on-Sea
Canvey Island

Margate)

Faversham

Sevenoaks Canterbury)

P 5
; Maidstone:
1 u\ :
‘ . Tonbridge 20 A
ol ,-

Map data ©2017 Google . Terms of Use Report a map error

(et)

_images/acled_africa_heatmap.png
locations = gmaps.datasets.load dataset_as_df("acled africa")
fig = gmaps.figure()

heatmap_ layer = gmaps.heatmap_layer(locations)
fig.add_layer(heatmap_layer)

fig

L3

Map Satellite

Map data ©2017 INEGI Imagery ©2017 NASA, TerraMetrics | Terms of Use

In [9]: heatmap layer.max_intensity = 100
heatmap_layer.point_radius =

_images/directions_layer_waypoints.png
In [4]:

fig = gmaps.figure()
geneva2zurich via montreux =\
gmaps.directions_layer(
geneva, zurich, waypoints=[montreux], travel mode='BICYCLING')
fig.add_layer(geneva2zurich_via montreux)
fig
<
EA— g] o ! Munich
Map Satellite / | o
\°r ;r a9 : VY D ¥ ‘ h |
TR J)x/ (96] & Rosegh}elr‘r»
o 3 5 Konstanz Rempten X
hé | ; s J,\A\—J > o I) < oo Berchtésgadeno
W/ e 1 b 5 F”e‘iTChShafen Garmisch-Partenkirchién <
e : - > R A m ¢
a@@éﬁ’.’el Innsbruck SR ZE§
IRégional o &y

V /

~ \
&
Trewso m

i Samt-EIner?n‘*‘ e

Oog w ’ ISR . . ('F Terms of Use Report a map error

_images/acled_africa_heatmap_gradient.png
In [20]: locations = gmaps.datasets.load dataset_as_df()
fig = gmaps.figure()
heatmap_ layer = gmaps.heatmap_layer(locations)
fig.add_layer(heatmap_layer)
fig

L3

Map Satellite

Map data ©2017 INEGI Imagery ©2017 NASA, TerraMetrics | Terms of Use

In [21]: heatmap_layer.max intensity = 100
heatmap_layer.point_ radius = 5
heatmap_ layer.gradient = [

(200, 200, 200, 0.6),
(100, 100, 100, 0.3),
(50, 50, 50, 0.3)

_images/tutorial-earthquakes.png
In [2]:

In [3]:

earthquake_df = gmaps.datasets.load_dataset_as_df(
earthquake_df.head()

latitude longitude magnitude

0 65.193300 -149.072500 1.70

1 38.791832 -122.780830 2.10

2 38.818001 -122.792168 0.48

3 33.601667 -116.727667 0.78

4 37.378334 -118.520836 3.64
locations = earthquake_df[[o 11

weights = earthquake_df[]

fig = gmaps.figure()

fig.add layer(gmaps.heatmap_layer(locations, weights=weights))
fig

3

Map Satellite

Map data ©2017 Imagery ©2017 N.

TerraMetrics

Terms of Use

_images/api_key.png
APl key

Here is your API key

_images/directions_layer_simple.png
In [63]: geneva = (46.2, 6.1)
montreux = (46.4, 6.9)
zurich = (47.4, 8.5)

fig = gmaps.figure()

geneva2zurich = gmaps.directions_layer(geneva, zurich)
fig.add_layer(geneva2zurich)

fig

50 A2 el 2 ppn
§ ' Parcpaturel ¥
régional [Freibur

des Ballons) 0

des Vosges

il A 4
Parc national

== Lol \‘ 1 / N E70 Bl
,/ Map data ©2017 GeoBasis-DE/BKG (©2009), Google, Inst. Geogr. Nacional . Terms of Use ! Report a map error -

_images/export-example.png
<« C | ® 0.0.0.0:8080/export.html

3

el o vezelaysn r

Map Satellite 1 [

=
—-—\/

La-Chaux-de)-Fo s

e

: 1
~ Pontarligr

=

e Creusoto
v y
o s
Lons-le-Saunier
el -

_images/transit-layer.png
In [4]:

fig = gmaps.figure(center=(51.5, -0.2), zoom_ level=11)
fig.add layer(gmaps.transit_layer())
fig

3

7 e

Ui Map Satellite
Z

4 "‘ .BﬁﬁkElﬁﬂS

> \d

Bysat
Hounslow Richmond s
» ol \

A A "ﬁ"'h’d A ! ‘\

Feltham ~ Twickenham gp,n_”l,’?n > ARLSFIELD. BAUAM

- Q '(w\ ar > 4
A Teddinagton \ N,

_static/up.png

_static/minus.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/comment.png

